
Available online at www.sciencedirect.com
www.elsevier.com/locate/knosys

Knowledge-Based Systems 21 (2008) 164–171
On multi-period multi-attribute decision making

Zeshui Xu

Department of Management Science and Engineering, School of Economics and Management, Tsinghua University, Beijing 100084, China

Received 15 December 2006; received in revised form 16 May 2007; accepted 22 May 2007
Available online 26 May 2007
Abstract

Multiple attribute decision making (MADM) is an important part of modern decision science. It has been extensively applied to var-
ious areas such as society, economics, military, management, etc., and has been receiving more and more attention over the last decades.
To date, however, most research has focused on single-period multi-attribute decision making in which all the original decision infor-
mation is given at the same period, and a number of methods have been proposed to solve this kind of problems. This paper is devoted
to investigating the multi-period multi-attribute decision making (MP-MADM) problems where the decision information (including
attribute weights and attribute values) are provided by decision maker(s) at different periods. We define the concept of dynamic weighted
averaging (DWA) operator, and introduce some methods, such as the arithmetic series based method, geometric series based method and
normal distribution based method, to obtain the weights associated with the DWA operator. Based on the DWA operator, we develop an
approach to MP-MADM. Moreover, we extend the DWA operator and the developed approach to solve the MP-MADM problems
where all the attribute values provided at different periods are expressed in interval numbers, and use a possibility-degree formula to
rank and select the given alternatives.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Multiple attribute decision making (MADM) involves
finding the most desirable alternative(s) from a discrete
set of feasible alternatives with respect to a finite set of
attributes. MADM has been being a hot research topic
over the last decades, and has been extensively applied to
various areas such as society, economics, military, manage-
ment, etc. [1–10]. A lot of studies have been done on single-
period MADM, for example, Saaty [1] used 1–9 ratio scale
to compare each pair of attributes (alternatives) so as to
construct a multiplicative preference relation, from which
the eigenvalue method is used to derive the attribute
(alternative) weights, and finally he aggregated these
weights of attributes and alternatives by using the weighted
averaging operator to get the ranking of alternatives.
0950-7051/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Hwang and Yoon [2] introduced a technique for order per-
formance by similarity to ideal solution (TOPSIS), one of
the known classical method for MADM. The fundamental
idea of the TOPSIS is that the chosen alternative should
have the shortest distance from the positive ideal solution
and the farthest distance from the negative ideal solution.
In the process of TOPSIS, the attribute values and the
attribute weights are given as exact numerical values. Chen
[11] extended the TOPSIS to the fuzzy environment in
which the rating of each alternative and the weight of each
attribute are described by linguistic terms which can be
expressed in triangular fuzzy numbers. A vertex procedure
was developed to calculate the distance between two trian-
gular fuzzy numbers, and a closeness coefficient was
defined to determine the ranking of all alternatives by cal-
culating the distances to both the fuzzy positive-ideal solu-
tion and fuzzy negative-ideal solution simultaneously. Park
and Kim [12] presented the characteristic of weak domi-
nance and proposed dominance graph, and also presented
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an algorithm, by using a separable linear program tech-
nique based on linear-(in)equality-styled information, to
derive the most preferable alternative(s). Kim et al. [13]
presented an interactive procedure for multiple attribute
group decision making problems with incomplete informa-
tion. The procedure needs each group member to express
his/her preference in relation to an additive value model
with incomplete preference statements, and calculates
group’s utility range based on each group member’s incom-
plete information. They also described theoretic models for
establishing group’s pairwise dominance relations with
group’s utility ranges by using a separable linear program-
ming technique. Ma [14] et al. utilized the subjective infor-
mation provided by a decision maker and the objective
information to establish a two-objective programming
model to determine the attribute weights, and then utilized
the simple additive weighting method to rank alternatives.
Xu and Chen [15] developed an interactive method for
solving multiple attribute group decision making problems
under fuzzy environments. The method can be used in situ-
ations where the information about attribute weights is
partly known and the decision maker weights are expressed
in exact numerical values or triangular fuzzy numbers, and
the attribute values take the form of triangular fuzzy num-
bers. Chen and Hwang [4] proposed a method for fuzzy
MADM problems. The approach first converts the fuzzy
decision data (linguistic terms or fuzzy numbers) into crisp
scores, and then applies an appropriate classical MADM
method (such as TOPSIS, etc.) to determine the ranking
of alternatives. It is capable of solving large size real-world
problems which contain a mixture of fuzzy and crisp data.
Brans and Vincke [16] presented a preference ranking orga-
nization method for enrichment evaluations (PROM-
ETHEE I) to build a partial ranking among alternatives,
and proposed an enhanced method, PROMETHEE II,
which allows ranking all alternatives, including incompara-
ble ones, to obtain a total classification. Pawlak et al.
[17–19] applied rough set theory to multi-attribute decision
analysis and developed some rough set based approaches
to solving the MADM problems. Xu and co-workers
[20,21] developed two evidential reasoning approaches to
multi-attribute decision analysis under uncertainty and
interval uncertainty, respectively. Yager [22] introduced
the concept of ordered weighted averaging (OWA) opera-
tor, whose fundamental characteristic is the re-ordering
step, in particular, an argument is not associated with a
particular weight, but rather a weight is associated with a
particular ordered position of the arguments. Then, he
used the OWA operator to aggregate the decision informa-
tion expressed in exact numerical values in MADM.
Bordogna et al. [23] established a linguistic model based
on linguistic OWA operators to evaluate the consensual
judgment and consensus degree for each alternative in mul-
tiple attribute group decision making, where both the deci-
sion makers’ evaluations of the alternatives and the degree
of consensus are expressed linguistically. Xu [24] proposed
the uncertain linguistic ordered weighted averaging
(ULOWA) operator and uncertain linguistic hybrid aggre-
gation (ULHA) operator, and then based on these two
operators, developed an approach to multiple attribute
group decision making with uncertain linguistic informa-
tion. Fenton and Wang [25] investigated the MADM prob-
lems taking account of uncertainty, risk and confidence.
They used linguistic variables and triangular fuzzy num-
bers to model the decision maker’s risk and confidence atti-
tudes in order to define a more complete MCDM solution,
and employed a practical travel problem to assess the
developed MCDM technique. This technique is useful for
tackling imprecision and subjectivity in complex, ill-defined
and human-oriented decision problems. Xu [26] explored
the MADM problems with linguistic information, in which
the information about attribute weights is incompletely
known, and the attribute values take the form of linguistic
variables. Xu introduced some approaches to obtaining the
weight information of attributes, and then established an
optimization model based on the ideal point of attribute
values, by which the attribute weights can be determined.
Furthermore, Xu utilized the numerical weighting linguis-
tic average (NWLA) operator to aggregate the linguistic
variables corresponding to each alternative and ranked
the alternatives by means of the aggregated linguistic infor-
mation, and then applied the developed method to the
ranking and selection of propulsion/manoeuvring system
of a double-ended passenger ferry.

However, in many real-life situations, such as multi-per-
iod (multi-stage) investment decision making, medical diag-
nosis, personnel dynamic examination, and military system
efficiency dynamic evaluation, etc., the original argument
information may be collected from different periods. Thus,
it is an interesting and important research issue. In this
paper, we shall focus on this issue and organize this paper
in six sections. Section 2 defines the concept of dynamic
weighted averaging (DWA) operator, and introduces some
methods to determine the weights associated with the DWA
operator. Based on the DWA operator, Section 3 develops
an approach to solving the MP-MADM problems where all
the attribute values at different periods are expressed in
exact numerical values. Section 4 extends the DWA opera-
tor and the developed approach to solve the MP-MADM
problems where all the attribute values provided at different
periods are expressed in interval numbers. Section 5 gives an
illustrative example, and Section 6 ends the paper.

2. Dynamic weighted averaging (DWA) operator

Information aggregation is a key step in the process of
MADM. At present, many aggregation operators have
been developed to aggregate argument information [27].
As was pointed out in [28], current research on aggregation
operators mainly focuses on time independent operators.
Accordingly, as time is not taken into account, operators
and weights are usually kept constant. However, in many
real-life situations, the argument information may be pro-
vided at different periods (stages). Thus, it is necessary to



g

investigate the time dependent aggregation operators. In
what follows, we define a dynamic weighted averaging
(DWA) operator.

Definition 1. Let a(t1), a(t2), . . . ,a(tp) be a collection of real-
valued arguments collected from p different periods tk

(k = 1,2, . . . ,p), and k(t) = (k(t1),k(t2), . . . ,k(tp))T be the
weight vector of the periods tk (k = 1,2, . . . ,p), then
DWAkðtÞðaðt1Þ; aðt2Þ; . . . ; aðtpÞÞ ¼
Xp

k¼1

kðtkÞaðtkÞ ð1Þ

is called a dynamic weighted averaging (DWA) operator,
where

kðtkÞ P 0; k ¼ 1; 2; . . . ; p;
Xp

k¼1

kðtkÞ ¼ 1 ð2Þ

Clearly, one important step of the DWA operator is to
determine the weight vector k(t) = (k(t1),k(t2), . . . ,k(tp))T

of the periods tk (k = 1,2, . . . ,p). In general, k(t) can be gi-
ven by decision maker(s) directly, or can be obtained by
using one of the following methods:

(1) Arithmetic series based method: Suppose that the dif-
ference value between the weight k(tk+1) and its adjacent
weight k(tk) is a, for each k, i.e.,

kðtkþ1Þ � kðtkÞ ¼ a; k ¼ 1; 2; . . . ; p � 1 ð3Þ
In this case, we have

kðtkÞ ¼ gþ ðk � 1Þa; gþ ðk � 1Þa P 0 ð4Þ
with the condition (2). From (4) we have

(i) If a = 0, then g = 1/n, i.e., k(tk) = 1/n, k = 1,2, . . . ,p,
which indicates that all the weights
k(tk)(k = 1,2, . . . ,p) are equal.

(ii) If a > 0, then k(tk) < k(tk+1), k = 1,2, . . . ,p � 1, which
indicates that the larger k, the greater k(tk).

(iii) If a < 0, then k(tk) > k(tk+1), k = 1,2, . . . ,p � 1, which
indicates that the larger k, the smaller k(tk).

(2) Geometric series based method: Suppose that the
weight k(tk+1) is b times as good as it adjacent weight
k(tk), for each k i.e.,

kðtkþ1Þ ¼ bkðtkÞ; b > 0; k ¼ 1; 2; . . . ; p � 1 ð5Þ

In this case, we have

kðtkÞ ¼ gbk�1; g; b > 0; k ¼ 1; 2; . . . ; p � 1 ð6Þ

Then by (2), it follows that

g ¼ 1Pp
k¼1b

k�1
; b > 0 ð7Þ

and thus

kðtkÞ ¼
bk�1Pp
j¼1b

j�1
; b > 0; k ¼ 1; 2; . . . ; p ð8Þ
From (8), we have

(i) If b = 1, then g = 1/n, i.e., k(t…
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Obviously, the normal distribution based method
assigns the largest weights to the medial period, and the
further the period tk departs from the medial period, the
smaller the weight assigned to the period tk.

Based on the DWA operator and the weight generation
methods above, in the next section, we shall develop a
straightforward approach to solving MP-MADM
problems.
3. An approach to MP-MADM

The MP-MADM problem under study can be described
as follows:

Let X = {x1,x2, . . . ,xn} be a discrete set of n feasible alter-
natives, and let U = {u1,u2, . . . ,um} be a finite set of attri-
butes. Suppose that there are p periods tk (k = 1,2, . . . ,p),
whose weight vector is k(t) = (k(t1),k(t2), . . . ,k(tp))T, where
k(tk) P 0, k = 1,2, . . . ,p,

Pp
k¼1kðtkÞ ¼ 1, and w(tk) =

(w1(tk),w2(tk), . . . ,wm(tk))T is the weight vector of the attri-
butes ui(i = 1,2, . . . ,m) at the period tk, where wi(tk) P 0,
i = 1,2, . . . ,m,

Pm
i¼1wiðtkÞ ¼ 1. Let A(tk) = (aij(tk))m·n be a

decision matrix (see Table 1), where aij(tk) is an attribute
value, which takes the form of positive real numbers, of
the alternative xj 2 X with respect to the attribute ui 2 U

at the period tk.
Consider that there are generally benefit attributes and

cost attributes in the MP-MADM problems. In order to
measure all attributes in dimensionless units and to facili-
tate inter-attribute comparisons, in what follows, we nor-
malize each decision matrix A(tk) = (aij(tk))m·n into a
corresponding decision matrix R(tk) = (rij(tk))m·n, by using
the following formulas:

rijðtkÞ ¼
aijðtkÞ

maxjfaijðtkÞg
for benefit attribute ui;

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ; p

ð16Þ

rijðtkÞ ¼
min

j
faijðtkÞg

aijðtkÞ
for cost attribute ui;

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ; p

ð17Þ

Now we first utilize the weighted averaging operator

rjðtkÞ ¼
Xm

i¼1

wiðtkÞrijðtkÞ; j ¼ 1; 2; . . . ; n ð18Þ

to aggregate the attribute values rij(tk) (i = 1,2, . . . ,m) in
the ith column of the normalized decision matrix R(tk) into
Table 1
Decision matrix A(tk)

x1 x2 � � � xn

u1 a11(tk) a12(tk) � � � a1n(tk)
u2 a21(tk) a22(tk) � � � a2n(tk)
..
. ..

. ..
. ..

. ..
.

um am1(tk) am2(tk) � � � amn(tk)
an overall attribute value rj(tk) of the alternative xj at the
period tk.

Then we utilize the DWA operator (1) to aggregate the
overall attribute values rj(tk) (k = 1,2, . . . ,p) of the p differ-
ent periods tk (k = 1,2, . . . ,p) into a complex overall attri-
bute value rj of the alternative xj, where

rj ¼
Xp

k¼1

kðtkÞrjðtkÞ; j ¼ 1; 2; . . . ; n ð19Þ

Therefore, we can rank all the alternatives xj (j = 1,2, . . . ,n)
and then select the most desirable one(s) in accordance
with the values of rj (j = 1,2, . . . ,n).

Consider that, sometimes, the input arguments may not
be specified, but value ranges can be obtained, that is, each
input argument is given in the form of interval values rather
than exact numerical values, in the next section, we shall
extend the above approach to MP-MADM in which all
the attribute values are expressed in interval numbers.

4. An approach to MP-MADM under interval uncertainty

We first define an uncertain dynamic weighted averaging
(UDWA) operator as below:

Definition 2. Let ã(t1), ã(t2), . . . , ã(tp) be a collection of
interval-valued arguments collected from the p different
periods tk(k = 1,2, . . . ,p), where ã(tk) = [ãL(tk),ãU(tk)],
ãL(tk) and ãU(tk) are the lower and upper limits of ã(tk),
respectively, k = 1,2, . . . ,p, k(t) = (k(t1),k(t2), . . . ,k(tp))T be
the weight vector of the periods tk(k = 1,2, . . . ,p), then

UDWAkðtÞð~aðt1Þ; ~aðt2Þ; . . . ; ~aðtpÞÞ ¼
Xp

k¼1

kðtkÞ~aðtkÞ

¼
Xp

k¼1

kðtkÞ~aLðtkÞ;
Xp

k¼1

kðtkÞ~aU ðtkÞ
" #

ð20Þ

is called an uncertain dynamic weighted averaging
(UDWA) operator, where the weight vector k(t) satisfies
the condition (2) and can be determined by using one of
the methods introduced in Section 2.

In what follows, we develop an approach to MP-
MADM under interval uncertainty:

Step 1. For a MP-MADM problem, X, U, k(t), and w(tk)
(k = 1,2, . . . ,p) are as defined in Section 3. Let
Ã(tk) = (ãij(tk))m·n be a decision matrix (see Table 2),
where ~aijðtkÞ ¼ ½~aL

ijðtkÞ; ~aU
ij ðtkÞ� is an attribute value, which
Table 2
Decision matrix Ã(tk)

x1 x2 � � � xn

u1 ½~aL
11ðtkÞ; ~aU

11ðtkÞ� ½~aL
12ðtkÞ; ~aU

12ðtkÞ� � � � ½~aL
1nðtkÞ; ~aU

1nðtkÞ�
u2 ½~aL

21ðtkÞ; ~aU
21ðtkÞ� ½~aL

22ðtkÞ; ~aU
22ðtkÞ� � � � ½~aL

2nðtkÞ; ~aU
2nðtkÞ�

..

. ..
. ..

. ..
. ..

.

um ½~aL
m1ðtkÞ; ~aU

m1ðtkÞ� ½~aL
m2ðtkÞ; ~aU

m2ðtkÞ� � � � ½~aL
mnðtkÞ; ~aU

mnðtkÞ�
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takes the form of interval numbers, of the alternative
xj 2 X with respect to the attribute ui 2 U at the period tk.
Step 2. Normalize each decision matrix Ã(tk) =
(ãij(tk))m·n into a corresponding decision matrix
~RðtkÞ ¼ ð~rijðtkÞÞm�n, by using the following formulas:

~rijðtkÞ ¼ ~aijðtkÞ=
Xn

j¼1

~aijðtkÞ for benefit attribute ui;

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ; p ð21Þ

~rijðtkÞ ¼ 1=~aijðtkÞ
� �

=
Xn

j¼1

1=~aijðtkÞ
� �

for cost attribute ui;

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ; p ð22Þ

By the operations of interval numbers, we rewrite (21) and
(22) as (23) and (24), respectively:

~r L
ijðtkÞ ¼ ~aL

ijðtkÞ=
Pn
j¼1

~aU
ij ðtkÞ

~rU
ij ðtkÞ ¼ ~aU

ij ðtkÞ=
Pn
j¼1

~aL
ijðtkÞ

8>>><
>>>:

for benefit attribute ui;

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ; p

ð23Þ

~r L
ijðtkÞ ¼ ð1=~aU

ij ðtkÞÞ=
Pn
j¼1

ð1=~aL
ijðtkÞÞ

~rU
ij ðtkÞ ¼ ð1=~aL

ijðtkÞÞ=
Pn
j¼1

ð1=~aU
ij ðtkÞÞ

8>>><
>>>:

for cost attribute ui;

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ; p

ð24Þ
where ~rijðtkÞ ¼ ½~rL

ijðtkÞ;~rU
ij ðtkÞ�, i = 1,2, . . . ,m, j = 1,2, . . . ,n,

k = 1,2, . . . ,p.
Step 3. Utilize the uncertain weighted averaging operator

~rjðtkÞ ¼ ~r L
j ðtkÞ;~rU

j ðtkÞ
h i

¼
Xm

i¼1

wiðtkÞ~rijðtkÞ

¼
Xm

i¼1

wiðtkÞ~rL
ijðtkÞ;

Xm

i¼1

wiðtkÞ~rU
ij ðtkÞ

" #
; j¼ 1; 2; . . . ; n

ð25Þ

to aggregate the attribute values ~rijðtkÞ ði ¼ 1; 2; . . . ;mÞ in
the ith column of the normalized decision matrix ~RðtkÞ into
an overall attribute value ~rjðtkÞ of the alternative xj at the
period tk.

Step 4. Utilize the UDWA operator (20) to aggregate
the overall attribute values ~rjðtkÞ ðk ¼ 1; 2; . . . ; pÞ of
the p different periods tk (k = 1,2, . . . ,p) into a complex
overall attribute value ~rj of the alternative xj, where

~rj ¼ ~r L
j ;~r

U
j

h i
¼
Xp

k¼1

kðtkÞ~rjðtkÞ

¼
Xp

k¼1

kðtkÞ~rL
j ðtkÞ;

Xp

k¼1

kðtkÞ~rU
j ðtkÞ

" #
;

j ¼ 1; 2; . . . ; n ð26Þ
Step 5. To rank the interval arguments ~rj

(j = 1,2·, . . . ,n), we first compare each ~ri with all ~rj

(j = 1,2, . . . ,n) by using the following possibility-degree
formula [29]:

pð~ri P ~rjÞ

¼ max 1�max
~rU

j � ~rL
i

~rU
i � ~r L

i þ ~rU
j � ~r L

j
; 0

 !
; 0

( )
ð27Þ

For convenience, we let pij ¼ pð~ri P ~rjÞ, and then con-
struct a complementary matrix P = (pij)n·n, which satisfies
[29,30].

pij P 0; pij þ pji ¼ 1; pii ¼
1

2
; i; j ¼ 1; 2; . . . ; n ð28Þ

Step 6. Summing all elements in each line of matrix P,
we have

pi ¼
Xn

j¼1

pij; i ¼ 1; 2; . . . ; n ð29Þ

Then we can reorder the interval arguments ~rj

(j = 1,2, . . . ,n) in descending order in accordance with the
values of pj (j = 1,2, . . .,n).

Step 7. Rank all the alternatives xj (j = 1,2, . . . ,n) and
then select the most desirable one(s) in accordance with
the values of rj (j = 1,2, . . . ,n).

5. Illustrative case

In this section, we utilize a practical MP-MADM prob-
lem to illustrate the application of the developed
approaches.

An investment company wants to invest a sum of money
in the best option. There is a panel with five possible com-
panies xj (j = 1,2, . . . , 5) in which to invest the money: (1)
x1 is a car company; (2) x2 is a food company; (3) x3 is a
computer company; (4) x4 is an arms company; and (5)
x5 is a TV company. The attributes which are considered
here in selection of the five possible companies are: (1) u1

is economical benefit; (2) u2 is social benefit; and (3) u3 is
the environmental pollution, where the attributes u1 and
u2 are benefit attributes, and the attribute u3 is cost attri-
bute. The investment company uses 0–1 scale to evaluate
the performance of the companies xj (j = 1,2, . . . , 5) in
2004–2006 according to the attributes ui (i = 1,2,3), and
constructs, respectively, the decision matrices A(tk)
(k = 1,2,3, here, t1 denotes ‘‘2004’’, t2 denotes ‘‘2005’’,
and t3 denotes ‘‘2006’’) as listed in Tables 3–5. Let
k(t) = (1/6, 2/6,3/6)T be the weight vector of the years tk

(k = 1,2,3), and let w(t1) = (0.40, 0.40, 0.20)T,
w(t2) = (0.40, 0.35,0.25)T, and w(t3) = (0.40,0.30,0.30)T be
the weight vectors of the attributes ui (i = 1,2,3) in the
years tk (k = 1,2,3), respectively.

We first normalize the decision matrices A(tk)
(k = 1,2,3) into the corresponding decision matrices R(tk)
(k = 1,2,3) (see Tables 6–8) by using the formulas (16)



Table 3
Decision matrix A(t1)

x1 x2 x3 x4 x5

u1 0.75 0.95 0.80 0.90 0.85
u2 0.85 0.70 0.90 0.80 0.85
u3 0.50 0.45 0.35 0.40 0.55

Table 4
Decision matrix A(t2)

x1 x2 x3 x4 x5

u1 0.80 0.90 0.85 0.85 0.90
u2 0.90 0.85 0.80 0.75 0.90
u3 0.45 0.40 0.40 0.50 0.60

Table 5
Decision matrix A(t3)

x1 x2 x3 x4 x5

u1 0.90 0.85 0.95 0.90 0.95
u2 0.85 0.90 0.85 0.80 0.85
u3 0.30 0.35 0.45 0.45 0.50

Table 6
Normalized decision matrix R(t1)

x1 x2 x3 x4 x5

u1 0.7895 1.0000 0.8421 0.9474 0.8947
u2 0.9444 0.7778 1.0000 0.8889 0.9444
u3 0.7000 0.7778 1.0000 0.8750 0.6364

Table 7
Normalized decision matrix R(t2)

x1 x2 x3 x4 x5

u1 0.8889 1.0000 0.9444 0.9444 1.0000
u2 1.0000 0.9444 0.8889 0.8333 1.0000
u3 0.8889 1.0000 1.0000 0.8000 0.6667

Table 8
Normalized decision matrix R(t3)

x1 x2 x3 x4 x5

u1 0.9474 0.8947 1.0000 0.9474 1.0000
u2 0.9444 1.0000 0.9444 0.8889 0.9444
u3 1.0000 0.8571 0.6667 0.6667 0.6000

Table 9
Decision matrix Ã(t1)

x1 x2 x3 x4 x5

u1 [0.70,0.80] [0.90,0.95] [0.80,0.90] [0.90,1.0] [0.80,0.85]
u2 [0.85,0.90] [0.70,0.75] [0.85,0.90] [0.80,0.90] [0.75,0.80]
u3 [0.30,0.50] [0.40,0.50] [0.30,0.40] [0.20,0.30] [0.50,0.60]

Table 10
Decision matrix Ã(t2)

x1 x2 x3 x4 x5

u1 [0.80,0.85] [0.90,0.95] [0.80,0.90] [0.85,0.95] [0.85,0.90]
u2 [0.90,0.95] [0.80,0.85] [0.70,0.80] [0.80,0.85] [0.80,0.90]
u3 [0.35,0.45] [0.35,0.40] [0.40,0.45] [0.30,0.50] [0.55,0.65]
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and (17) and then utilize (18) to aggregate the attribute val-
ues in the ith column of R(tk) into an overall attribute value
rj(tk) of the alternative xj at the year tk:
Table 11
Decision matrix Ã(t3)

x1 x2 x3 x4 x5

u1 [0.90,0.95] [0.85,0.90] [0.85,0.95] [0.90,0.95] [0.80,0.95]
u2 [0.85,0.95] [0.90,1.0] [0.75,0.85] [0.80,0.90] [0.80,0.85]
u3 [0.30,0.35] [0.30,0.40] [0.45,0.50] [0.35,0.45] [0.45,0.50]
r1ðt1Þ ¼ 0:8333; r2ðt1Þ ¼ 0:8667; r3ðt1Þ ¼ 0:9368;

r4ðt1Þ ¼ 0:9095; r5ðt1Þ ¼ 0:8629; r1ðt2Þ ¼ 0:9278;

r2ðt2Þ ¼ 0:9805; r3ðt2Þ ¼ 0:9389; r4ðt2Þ ¼ 0:8694;

r5ðt2Þ ¼ 0:9167; r1ðt3Þ ¼ 0:9623; r2ðt3Þ ¼ 0:9150;

r3ðt3Þ ¼ 0:8833; r4ðt3Þ ¼ 0:8456; r5ðt3Þ ¼ 0:8633
By using (1), we aggregate the overall attribute values rj(tk)
(k = 1,2,3) of the years tk (k = 1,2,3) into a complex over-
all attribute value rj of the alternative xj

r1 ¼ 0:9293; r2 ¼ 0:9288; r3 ¼ 0:9107;

r4 ¼ 0:9642; r5 ¼ 0:8810

Therefore, we can rank all the alternatives xj (j = 1,2, . . . , 5)
in accordance with the values of rj (j = 1,2, . . . , 5)

x4 � x1 � x2 � x3 � x5

and thus the best alternative (company) is x4.
Sometimes, however, the evaluation information can

not be provided with exact numerical value, but value
ranges can be obtained due to the increasing complexity
and uncertainty of real-life decision making problems. In
this case, we reconsider the above MP-MADM problem
as follows:

The investment company uses 0–1 scale to evaluate the
performance of the companies xj (j = 1,2, . . . , 5) in 2004–
2006 according to the attributes ui (i = 1,2,3), and con-
structs, respectively, the decision matrices Ã(tk)
(k = 1,2,3), in which all the attribute values are expressed
in interval numbers (see Tables 9–11):

To get the best alternatives, the following steps are
involved:

Step 1. Normalize the decision matrices Ã(tk)
(k = 1,2,3) into the corresponding decision matrices
~RðtkÞðk ¼ 1; 2; 3Þ (see Tables 12–14), by using the for-
mulas (23) and (24).
Step 2. Utilize (25) to aggregate the attribute values in
the ith column of the normalized decision matrix ~RðtkÞ



Table 12
Normalized decision matrix ~Rðt1Þ

x1 x2 x3 x4 x5

u1 [0.1556,0.1951] [0.2000,0.2317] [0.1778,0.2195] [0.2222,0.2439] [0.1778,0.2073]
u2 [0.1977,0.2278] [0.1628,0.1899] [0.1977,0.2278] [0.1860,0.2278] [0.1744,0.2152]
u3 [0.1237,0.2899] [0.1237,0.2174] [0.1546,0.2899] [0.2062,0.4348] [0.1031,0.1739]

Table 13
Normalized decision matrix ~Rðt2Þ

x1 x2 x3 x4 x5

u1 [0.1758,0.2024] [0.1978,0.2262] [0.1758,0.2143] [0.1868,0.2262] [0.1868,0.2143]
u2 [0.2069,0.2375] [0.1839,0.2125] [0.1609,0.2000] [0.1839,0.2125] [0.1839,0.2250]
u3 [0.1663,0.2726] [0.1870,0.2726] [0.1663,0.2385] [0.1496,0.3180] [0.1151,0.1734]

Table 14
Normalized decision matrix ~Rðt3Þ

x1 x2 x3 x4 x5

u1 [0.1915,0.2209] [0.1809,0.2093] [0.1809,0.2209] [0.1915,0.2209] [0.1702,0.2209]
u2 [0.1868,0.2317] [0.1978,0.2439] [0.1648,0.2073] [0.1758,0.2195] [0.1758,0.2073]
u3 [0.2045,0.2879] [0.1790,0.2879] [0.1432,0.1919] [0.1591,0.2467] [0.1432,0.1919]
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into an overall attribute value ~rjðtkÞ of the alternative xj

at the year tk:

~r1ðt1Þ ¼ ½0:1661; 0:2271�; ~r2ðt1Þ ¼ ½0:1699; 0:2121�;
~r3ðt1Þ ¼ ½0:1811; 0:2369�; ~r4ðt1Þ ¼ ½0:2045; 0:2756�;
~r5ðt1Þ ¼ ½0:1615; 0:2038�; ~r1ðt2Þ ¼ ½0:1843; 0:2322�;
~r2ðt2Þ ¼ ½0:1902; 0:2330�; ~r3ðt2Þ ¼ ½0:1682; 0:2153�;
~r4ðt2Þ ¼ ½0:1765; 0:2444�; ~r5ðt2Þ ¼ ½0:1679; 0:2078�;
~r1ðt3Þ ¼ ½0:1940; 0:2442�; ~r2ðt3Þ ¼ ½0:1854; 0:2433�;
~r3ðt3Þ ¼ ½0:1648; 0:2081�; ~r4ðt3Þ ¼ ½0:1771; 0:2282�;
~r5ðt3Þ ¼ ½0:1638; 0:2081�

Step 3. Utilize the UDWA operator (20) to aggregate
the overall attribute values ~rjðtkÞðk ¼ 1; 2; 3Þ of the years
tk(k = 1,2,3) into a complex overall attribute value ~rj of
the alternative xj:

~r1 ¼ ½0:1861; 0:2374�; ~r2 ¼ ½0:1844; 0:2347�;
~r3 ¼ ½0:1686; 0:2153�
~r4 ¼ ½0:1815; 0:2415�; ~r5 ¼ ½0:1648; 0:2073�

Step 4. Compare each ~ri with all ~rj (j = 1,2, . . . , 5) by
using (27), and then construct a complementary matrix:

P ¼

0:5 0:5217 0:7020 0:5022 0:7740

0:4783 0:5 0:6814 0:4823 0:7532

0:2980 0:3186 0:5 0:3168 0:5661

0:4978 0:5177 0:6832 0:5 0:7483

0:2260 0:2468 0:4339 0:2517 0:5

2
6666664

3
7777775

Step 5. Summing all elements in each line of matrix P,
we have
p1 ¼ 0:2250; p2 ¼ 0:2198; p3 ¼ 0:1750; p4 ¼ 0:2223;

p5 ¼ 0:1579

Then we can reorder the interval arguments ~rj

(j = 1,2, . . . , 5) in descending order in accordance with the
values of pj (j = 1,2, . . . , 5)

~r4 > ~r1 > ~r2 > ~r3 > ~r5

and thus we get the ranking of alternatives

x4 � x1 � x2 � x3 � x5

therefore, the best alternative (company) is x4.

6. Conclusions

In this paper, we have introduced two dynamic aggrega-
tion operators, i.e., the dynamic weighted averaging
(DWA) operator and uncertain dynamic weighted averag-
ing (UDWA) operator. Both the operators take time into
account in the aggregation process, and thus are time inde-
pendent operators, which can overcome the disadvantages
of the existing static aggregation operators (or called time
independent operators). To determine the weights associ-
ated with these two dynamic aggregation operators, we
have proposed three simple weight generation methods
including the arithmetic series based method, geometric
series based method, and normal distribution based
method, all of which can sufficiently embody the character-
istics of the provided original arguments. The DWA oper-
ator can be used to aggregate the real-valued arguments,
and the UDWA operator can be used to aggregate the
interval-valued arguments. All these real-valued or inter-
val-valued arguments are obtained from different periods.



Furthermore, we have developed a DWA operator based
approach to multi-period multi-attribute decision making
(MP-MADM) where all the decision information is
expressed in real-valued arguments, and developed an
UDWA operator based approach to MP-MADM under
interval uncertainty, in which all the attribute values take
the form of interval numbers. Both the approaches have
been detailedly verified with a practical case.

The further research may focus on the application of the
developed approaches to the fields of medical diagnosis,
personnel dynamic examination, and military system effi-
ciency dynamic evaluation, etc.
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