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In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane
algorithm is presented. The main features of the algorithm are described, convergence to a Karush–
Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is
showed. The algorithm is based on an earlier version for convex inequality constrained problems, but
here the algorithm is extended to general continuously differentiable nonlinear programming problems
containing both nonlinear inequality and equality constraints. A comparison with some existing solvers
shows that the algorithm is competitive with these solvers. Thus, this new method based on solving
linear programming subproblems is a good alternative method for solving nonlinear programming
problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear program-
ming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlin-
ear programming subproblems in the branch and bound tree for convex, inequality constrained
problems.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Kelley’s cutting plane method [11] was introduced 1960 to
solve nonlinear programming (NLP) problems by solving a se-
quence of linear programming (LP) problems. Although some other
methods based on linear programming exist, such as the method of
approximate programming [6], LP techniques were quickly aban-
doned in favor of sequential quadratic programming (SQP) tech-
niques. After Han proved local and global convergence of SQP
methods in[7, 8], a large amount of research papers have been pro-
duced on SQP-based techniques. Indeed, many of the NLP solvers
today use SQP techniques in one form or the other.

There are some interesting recent papers on successive linear
programming (SLP) techniques. In [2], a procedure is presented
where linear programming and quadratic programming subprob-
lems are successively solved to find the optimal solution. The linear
programming problem provides an estimate of the active con-
straints within a trust region and a quadratic programming prob-
lem is constructed and solved using the active constraints at the
optimal solution of the linear problem. However, the method in
[2] utilizes linear programming problems mainly to estimate the
active constraints in each iteration, and solves a quadratic, equality
constrained, problem as well in each iteration.
ll rights reserved.
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In this paper it is shown that LP techniques can be applied quite
successfully to solve NLP problems efficiently, even without having
to solve quadratic subproblems. Indeed, numerical tests on two
standard problem test sets show that the described algorithm is
a competitive alternative to other NLP solvers. The algorithm de-
scribed here can be used to solve NLP problems with both nonlin-
ear inequality and equality constraints and global convergence to a
Karush–Kuhn–Tucker (KKT) stationary point is shown for noncon-
vex continuously differentiable problems. The proposed algorithm
is an extension of the sequential cutting plane (SCP) algorithm
introduced in [19]. The original algorithm only solved convex prob-
lems with nonlinear inequality constraints. Note that the acronym
SCP should not be confused with sequential convex programming,
introduced in [24]. In sequential convex programming, the original
NLP problem is solved by solving a sequence of convex, separable
nonlinear subproblems. Here, the approach is to use linear sub-
problems to solve the original NLP problem.

The primary goal with the algorithm described in this paper, as
with the convex version of the algorithm, is to optimize perfor-
mance on problems where the objective and constraints are easy
to evaluate. The primary target has not been to minimize the num-
ber of function evaluations. If the constraints and objective are
time-consuming to evaluate, then some other algorithm may be
better suited for such problems.

One application of the algorithm is as a component in a mixed
integer nonlinear programming (MINLP) algorithm. For convex,
inequality constrained MINLP problems the LP subproblems
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conveniently provide a lower bound on the optimal solution of the
convex NLP subproblem. Lower bounds are needed in the branch
and bound procedure for efficiency reasons. See [21] for more de-
tails. Very promising results are reported in [20] for a special set of
difficult block optimization problems. The MINLP version of the
algorithm found better solutions in one minute compared to the
solutions that other commercial solvers found in 12 h.

Solving convex MINLP problems is also important in a global
MINLP optimization context as most of the deterministic algo-
rithms are based on solving a sequence of convexified MINLP prob-
lems [1,16,23]. The algorithm can also be used for solving general
nonconvex MINLP problems as a subsolver in an NLP branch and
bound algorithm [4]. Numerical experience indicate that the SCP
algorithm can be applied for these types of problems as well as
convergence to a stationary point appear to be fast also when iter-
ates are far from the stationary point.

1.1. Overview

Our proposed algorithm solves problems of the form

min f ðxÞ;
s:t: gjðxÞ 6 0; j ¼ 1; . . . ;mi;

hrðxÞ ¼ 0; r ¼ 1; . . . ;me;

x 2 Rn;

ðNLPÞ ð1Þ

where the functions f : Rn ! R, gj : Rn ! R; j ¼ 1; . . . ;mi and
hr : Rn ! R; r ¼ 1; . . . ;me are continuously differentiable over Rn.
Contrary to [19], the objective or constraints are not assumed to
be convex. It is assumed that the constraints gjðxÞ 6 0; j ¼ 1;
. . . ;mi include linear constraints defining a bounded region X.

It is also assumed that the extended Mangasarian–Fromovitz
constraint qualification (EMFCQ) holds for any x 2 Rn. The con-
straint qualification holds at x 2 Rn when rhrðxÞ; r ¼ 1; . . . ;me

are linearly independent and there exists a z 2 Rn such that

rgjðxÞ
T z < 0; j 2 JþðxÞ [ J0ðxÞ;

rhrðxÞT z ¼ 0; r ¼ 1; . . . ;me;

where Jþ is an index set denoting the violated constraints gj,

JþðxÞ :¼ fj : gjðxÞ > 0g;

and J0 is an index set denoting the active constraints gj,

J0ðxÞ :¼ fj : gjðxÞ ¼ 0g:

The EMFCQ and its relation to exact penalty functions are con-
sidered in [15]. In the context of this algorithm, the constraint qual-
ification guarantees that one can, for any infeasible point, find a
search direction such that the constraint infeasibilities are reduced.

2. Algorithm

The algorithm is similar to the algorithm presented in [19] in
that it will perform a sequence of NLP iterations until a locally opti-
mal solution is found. Each NLP iteration consists of a sequence of
LP subiterations. In each LP subiteration an LP problem is solved
and a line search performed in the search direction obtained as
the solution to the LP problem. At the end of the NLP iteration,
the new iterate must reduce a merit function sufficiently in order
to guarantee convergence. If not, a new iterate is generated such
that the merit function is sufficiently reduced.

2.1. LP subiterations

In each LP subiteration an LP problem is solved. The LP problem
is based on forming cutting planes in the current iterate xðiÞ. In LP
subiteration ðiÞ of an NLP iteration the LP problem solved is
min rf ðxðiÞÞT dþ C
Xmi

j¼1

tg
j þ

Xme

r¼1

thþ

r þ
Xme

r¼1

th�

r

 !
;

s:t: gjðxðiÞÞ þ rgjðxðiÞÞ
T d 6 tg

j ; j ¼ 1; . . . ;mi; ð1aÞ

hrðxðiÞÞ þ rhrðxðiÞÞT d ¼ thþ

r � th�

r ; r ¼ 1; . . . ;me; ð1bÞ
ðdðrÞÞT HðiÞ d ¼ 0; r ¼ 1; . . . ; i� 1; i > 1; ð1cÞ
dL
6 d 6 dU

; ð1dÞ
0 6 tg

j 6 maxfgjðxðiÞÞ;0g; j ¼ 1; . . . ;mi; ð1eÞ

0 6 thþ

r 6 jhrðxðiÞÞj; r ¼ 1; . . . ;me; ð1fÞ
0 6 th�

r 6 jhrðxðiÞÞj; r ¼ 1; . . . ;me; ð1gÞ

which has been generated in the point xðiÞ. Call the problem LPðxðiÞÞ
and the optimal solution to the problem ðdðiÞ; tg;ðiÞ; thþ ;ðiÞ; th� ;ðiÞÞ,
where dðiÞ 2 Rn, tg;ðiÞ 2 Rmi , thþ ;ðiÞ 2 Rme and th� ;ðiÞ 2 Rme .

Here the constraints (1a) and (1b) are linearizations of the non-
linear constraint functions g and h at xðiÞ and tg , thþ and th� are in-
cluded to relax the constraints such that a solution d exists within
the box constraints (1d).

The constraints

ðdðrÞÞT HðiÞ d ¼ 0; r ¼ 1; . . . ; i� 1; i > 1;

ensure that the solution will be a conjugate direction with respect
to the previously obtained search directions within the NLP itera-
tion. The search directions for the previous LP subiterations within
the NLP iteration are denoted dðrÞ; r ¼ 1; . . . ; i� 1 and HðiÞ is the esti-
mate, in LP subiteration ðiÞ, of the Hessian of the Lagrangian for
ðNLPÞ.

Note that for the convergence proof, only one LP subiteration is
needed in each NLP iteration. The subsequent LP subiterations are
only performed to improve the convergence speed. The subsequent
LP subiterations generate conjugate search directions and thus the
algorithm resembles the conjugate gradient search method for
unconstrained problems.

The lower bounds are assumed to be negative and the upper
bounds positive, i.e. dL

< 0 and dU
> 0.

Note that both the linearizations of the constraints as well as
the constraints enforcing conjugacy with respect to the Hessian
estimate of the Lagrangian can be viewed as cutting planes. The
constraints (1a) form half-spaces that approximate the feasible re-
gion of g, (1b) are cutting hyperplanes that approximate the feasi-
ble region of h and the constraints (1c) are cutting hyperplanes that
limit the search direction d by enforcing it to lie on these hyper-
planes and thus be a conjugate direction to the previously obtained
search directions within the NLP iteration.

2.1.1. Lagrange multiplier estimates
The optimal values of the dual variables from (1) are used as La-

grange multiplier estimates for subsequent line searches and for
the estimate of the Hessian of the Lagrangian.

If the LP problem is generated in a stationary point x� to ðNLPÞ,
then the dual variables k and l of the constraints (1a) and (1b) for
the solution to LPðx�Þ will be Lagrange multipliers for x� in ðNLPÞ.

2.1.2. Infeasible LP problems
The first LP problem within the NLP iteration cannot be infeasi-

ble, since the variables tg , thþ and th� will relax the problem suffi-
ciently to allow a solution d ¼ 0 for any problem (when the
relaxing variables are equal to the maximum constraint violation).
Thus, there is no need to deal with infeasible LP problems as was
the case for the convex version of the algorithm presented in [19].

Note, however, that the constant C should be chosen large en-
ough to guarantee, for infeasible iterates, that an optimal solution
is obtained where dðiÞ–0 and the constraint infeasibility is reduced.
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The constraint infeasibility is reduced when there is either a
j 2 f1; . . . ;mig such that tg

j < gjðxkÞ or there is an r 2 f1; . . . ;meg
such that thþ

r < jhrðxkÞj and th�

r < jhrðxkÞj for the optimal solution
to LPðxkÞ.

If such a solution cannot be obtained in the first LP subiteration,
then the original problem ðNLPÞ is considered infeasible. Generally,
this is not true, as the algorithm may have converged to a locally
infeasible point. However, as it was assumed that the EMFCQ
holds, the constraint qualification guarantees that such solutions
can be found.

2.1.3. Line search
The optimal solution dðiÞ to LPðxðiÞÞ provides a search direction,

which is used in a line search to minimize the function

eLðx; k;lÞ ¼ f ðxÞ þ
Xmi

j¼1

kjgjðxÞ
þ þ

Xme

r¼1

jlrhrðxÞj

þ q
Xmi

j¼1

kjðgjðxÞ
þÞ2 þ q

Xme

r¼1

jlrjðhrðxÞÞ2:

Here k and l are Lagrange multiplier estimates obtained from
the dual variables of the previously solved LP problem and
gjðxÞ

þ ¼maxfgjðxÞ;0g. The parameter q is a penalty parameter that
is kept fixed during the optimization process.

The line search looks for the minimum of eLðiÞðxÞ ¼ eLðx; kðiÞ;lðiÞÞ,
where kðiÞ and lðiÞ are the Lagrange multiplier estimates obtained
in LP subiteration ðiÞ. The line search is performed in direction
dðiÞ starting from xðiÞ, that is

aðiÞ ¼ argmin
06a61

eLðiÞðxðiÞ þ adðiÞÞ:

The next iterate is then set to xðiþ1Þ ¼ xðiÞ þ aðiÞdðiÞ and used as the
starting point in the next LP subiteration. Note that an exact line
search is not necessarily required, one could also use sufficient de-
crease criteria for the line search.

2.1.4. Hessian estimates
The standard Broyden–Fletcher–Goldfarb–Shanno (BFGS) up-

date formula was used to provide estimates for the Hessian,
although other methods could be used as well. The Hessian esti-
mate is based on the Lagrangian function

Lðx; k;lÞ ¼ f ðxÞ þ
Xmi

j¼1

kjgjðxÞ þ
Xme

r¼1

lrhrðxÞ:
2.1.5. Subiteration termination criteria
The above described steps are then repeated until a termination

criterion is met. A number of criteria are used to determine when
to stop doing LP subiterations. Contrary to the algorithm described
in [19], the first LP subproblem in each NLP iteration cannot be
infeasible as there are variables tg , thþ and th� that relaxes the LP
subproblem. Instead, for the first subiteration, an optimal solution
to the LP subproblem where the constraint infeasibility is not re-
duced indicates that the original problem may be infeasible or that
the point is close to a locally infeasible point. In subsequent subit-
erations, if any of the relaxation variables are greater than zero, the
equality constraints (1c) may be too constraining and the subiter-
ations are terminated.

The algorithm stops doing more LP subiterations if one of the
following criteria is met:

(1) Terminate if i > n.
(2) Terminate if the norm of dðiÞ is close to zero.
(3) Terminate if the constraint infeasibility is not reduced, i.e.

there is not a j 2 f1; . . . ;mig such that tg
j < gjðxkÞ and there

is not an r 2 f1; . . . ;meg such that thþ

r < jhrðxkÞj and
th�

r < jhrðxkÞj for the optimal solution to LPðxkÞ.
(4) Terminate if i > 1 and any of relaxation variables tg , thþ and
th� are greater than zero.

(5) Terminate if aðiÞ is close to one.
2.2. NLP iterations

Each NLP iteration consists of a sequence of LP subiterations.
Thus, several LP problems are solved and several line searches per-
formed in each NLP iteration until one of the subiteration termina-
tion criteria described in 2.1.5 is met. At the end of the NLP
iteration, the new iterate must reduce a merit function sufficiently
in order to guarantee convergence to a KKT stationary point. If not,
the new iterate must be replaced with an iterate that does reduce
the merit function sufficiently. Such an iterate can be found by
restarting from the previously accepted iterate and minimizing
the merit function, rather than the function eLðiÞ, in a descent direc-
tion for the merit function.

The merit function used here is

MðxÞ ¼ f ðxÞ þ pðxÞ;

where pðxÞ is a penalty term defined by

pðxÞ ¼
Xmi

j¼1

�kjgjðxÞ
þ þ

Xme

r¼1

�lr jhrðxÞj:

The parameters �k and �l should be chosen such that they are
greater than the absolute value of any Lagrange multiplier esti-
mate, thus
�kj > kj; j ¼ 1; . . . ;mi ð2Þ
and

�lr > jlr j; r ¼ 1; . . . ;me ð3Þ

should hold for any Lagrange multiplier estimate k and l obtained
during the optimization process.

In practice, numerical experience shows that it is better to use a
procedure that updates �k and �l dynamically during the optimiza-
tion process whenever estimates of the Lagrange multipliers are
greater than the current �k and �l (or use some similar scheme for
estimating these parameters). Assumptions (2) and (3) are, how-
ever, needed for the convergence proof.

2.2.1. Sufficient reduction test
The new iterate at the end of the NLP iteration needs to satisfy a

sufficient reduction test. Note first that the directional derivatives
of gjðxÞ

þ and j hrðxÞ j in direction d are

Dd gjðxÞ
þ ¼

rgjðxÞ
T d if gjðxÞ > 0;

ðrgjðxÞ
T dÞþ if gjðxÞ ¼ 0;

0 if gjðxÞ < 0;

8>><>>:
and

DdjhrðxÞj ¼
rhrðxÞT d if hrðxÞ > 0;

jrhrðxÞT dj if hrðxÞ ¼ 0;

�rhrðxÞT d if hrðxÞ < 0:

8><>:
Consequently, the directional derivative of M in direction d is

Dd MðxÞ ¼ rf ðxÞT dþ
Xmi

j¼1

�kjDd gjðxÞ
þ þ

Xme

r¼1

�lrDd jhrðxÞj:

The new iterate xkþ1, at the end of NLP iteration k, should satisfy

Mðxkþ1Þ 6 Mðxk þ akdkÞ ð4Þ

and xk þ akdk should satisfy

Mðxk þ akdkÞ �MðxkÞ 6 rakDdk MðxkÞ; r 2 ð0;1Þ ð5Þ
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and

Ddk Mðxk þ akdkÞP gDdk MðxkÞ; g 2 ðr;1Þ: ð6Þ

Here xk is the current iterate in the first LP subiteration for NLP
iteration k, dk is the search direction obtained as a solution to LPðxkÞ
and ak is the result for the corresponding line search. Since the line
search is restricted to 0 6 ak

6 1, the iterate can be accepted if
ak ¼ 1 even if (6) does not hold.

The requirements (4)–(6) are theoretical requirements needed
when proving convergence of the algorithm. The requirement (5)
ensures that the merit function M is sufficiently reduced and (6)
ensures that large enough steps are taken in each iteration, i.e. it
does not allow arbitrarily small ak. Therefore, ak ¼ 1 can alterna-
tively be accepted. Finally, (4) ensures that the iterate at the end
of the NLP iteration does not increase the merit function value
above the merit function value obtained after the first LP subitera-
tion in the NLP iteration. Note that it is proved later in Theorem 6
that Ddk MðxkÞ < 0 unless xk is a KKT stationary point.

Note also that if dk is a descent direction for M and an exact line
search starting from xk minimizing M is performed, then xk þ akdk

will satisfy the sufficient reduction criteria (4) and (6), but not nec-
essarily (5). However, in practice this can be avoided by choosing r
sufficiently close to zero. Alternatively, an inexact line search algo-
rithm that finds a step satisfying (5) and (6), and hence also (4) if
xkþ1 ¼ xk þ akdk, is described in [13].

2.2.2. Generating acceptable iterates
If the new iterate xkþ1 does not satisfy the sufficient reduction test

defined by (4)–(6), a new iterate that satisfies the test must be gen-
erated. It is shown in Theorem 6 that the solution dð1Þ to the first LP
subproblem in an NLP iteration is a descent direction for the merit
function M. Thus, a new point that satisfies the sufficient reduction
test can be generated by restarting the LP subiterations from xk

and repeating the line searches in the directions dðiÞ obtained in
the LP subiterations, but rather minimizing M instead of eLðiÞ in each
line search. Since at least dð1Þ is a descent direction for the merit func-
tion, an acceptable iterate can be generated by using this procedure.

2.3. Updating trust region bounds

The bounds dL and dU form a trust region for the solution d to
the LP subproblem. This trust region may either be increased if
the current trust region is too small or reduced if the current trust
region is too large. A simple procedure to update the trust region
based on the step length taken in each NLP iteration was used. Let

dl ¼max
xkþ1

l � xk
l

dL
l

�����
�����; xkþ1

l � xk
l

dU
l

�����
�����

( )
; l ¼ 1; . . . ;n

and dmax ¼max16l6nfdlg. Here dmax measures the step between two
NLP iterates relative to the lower and upper bounds. Note that dmax

may be larger than one, since multiple LP subiterations are per-
formed in an NLP iteration.

Let further 0 < ddec < 1
2 and 1

2 < dinc < 1 be given tolerances for
how small and large a step may be without decreasing or increas-
ing the trust region bounds.

Then, if dmax < ddec, the trust region bounds are decreased,

dU
:¼ dmax

ddec dU and dL
:¼ dmax

ddec dL
;

and if dmax > dinc, the trust region bounds are increased,

dU
:¼ 2dmax dU and dL

:¼ 2dmax dL
:

2.4. NLP iteration termination criteria

The NLP iterations are continued until the current iterate is a
stationary point. Here it has been assumed that the problems al-
ways have stationary points. Generally, the algorithm may stop
at points where the constraint infeasibility cannot be reduced, i.e.
the relaxation variables tg , thþ and th� are close to the upper bounds
of these variables for the first LP subproblem in an NLP iteration. In
that case it must be assumed that the original NLP problem is
infeasible, although it may be that the algorithm has converged
to a locally infeasible point.

The current iterate xk is a stationary point if it satisfies the first-
order Karush–Kuhn–Tucker conditions, i.e.

(1) gjðxkÞ 6 0; j ¼ 1; . . . ;mi.
(2) hrðxkÞ ¼ 0; r ¼ 1; . . . ;me.
(3) kjgjðxkÞ ¼ 0; j ¼ 1; . . . ;mi.
(4) kj P 0; j ¼ 1; . . . ;mi.
(5) rf ðxkÞ þ

Pmi
j¼1kjrgjðxkÞ þ

Pme
r¼1lrrhrðxkÞ ¼ 0.

These criteria are easy to evaluate using the approximations of k
and l, which are obtained from the dual problem of the LP sub-
problem. Note that (4) is always satisfied as the approximation
of k is based on the dual problem of the LP subproblem, which con-
tains the constraint k P 0.

Note also that the algorithm may run into problems in cases
where the stationary point is not a Karush–Kuhn–Tucker station-
ary point as the criteria above will not hold in such a point. In these
cases, however, initial numerical experience shows that the algo-
rithm may still find a Karush–Kuhn–Tucker stationary point within
the accepted solution tolerance in a neighbourhood of the true
solution.

2.5. SCP algorithm

The SCP algorithm is summarized below.

1. Initialize: H1 ¼ I, k ¼ 1, x1 ¼ initial starting point.
2. Do LP subiterations.

2.1 Initialize: i ¼ 1, xð1Þ ¼ xk, Hð1Þ ¼ Hk.
2.2 Generate LPðxðiÞÞ and solve it to obtain search direction

dðiÞ and Lagrange multiplier estimates kðiÞ and lðiÞ (dual
optimal solution).

2.3 Check whether current iterate is a stationary point (Sec-
tion 2.4).

2.4 Perform line search to minimize eLðiÞðxðiÞ þ adðiÞÞ (Section
2.1.3). Let xðiþ1Þ ¼ xðiÞ þ aðiÞdðiÞ.

2.5 Update the estimate of the Hessian of the Lagrangian
using the BFGS update formula and call it Hðiþ1Þ (Section
2.1.4).

2.6 If some subiteration termination criterion satisfied (Sec-
tion 2.1.5)
Then exit LP subiterations (go to 3).
Else let i :¼ iþ 1 and go to 2.2.
3. Store the current iterate and Hessian estimate from the LP sub-
iterations, i.e. xkþ1 ¼ xðiÞ and Hkþ1 ¼ HðiÞ.

4. If not sufficient decrease for merit function (Section 2.2.1)

Then find a new iterate xkþ1 with sufficient decrease (Sec-
tion 2.2.2).

5. If trust region too small or too large

Then update trust region (Section 2.3).

6. If iterate not a stationary point (Section 2.4)

Then let k :¼ kþ 1 and start new NLP iteration (go to 2).
3. Convergence

In this section it is shown that the algorithm has global conver-
gence properties. The section is organized as follows: in Theorem 2
it is shown that a constant C may be found such that the constraint
infeasibility is reduced in the first LP subiteration.
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In Theorem 6 it is shown that the algorithm will, in the first LP
subiteration, generate directions that are descent directions for the
merit function M when solving LP problem LPðxkÞ.

Finally, in Theorem 8 it is shown that any limit point of an infi-
nite sequence of iterates is a KKT stationary limit point. Note that
Theorem 6 already states that if the solution to the LP problem
solved in the first subiteration of an NLP iteration is not a descent
direction for the merit function, then the current iterate is a KKT
stationary point for ðNLPÞ.

First it is shown that it is possible in the first LP subiteration to
find constants C for any xk 2 Rn such that the constraint infeasibil-
ity is reduced for the linearized problem LPðxkÞ. The proof needs
the following lemma.

Lemma 1. Take any xk such that EMFCQ holds. Then there is a d such
that

rgjðxkÞT d 6 �gjðxkÞ; j 2 JþðxkÞ [ J0ðxkÞ;
rhrðxkÞT d ¼ �hrðxkÞ; r ¼ 1; . . . ;me:

Proof. Let br ¼ �hrðxkÞ=kgðxkÞþk1, where kgðxkÞþk1 is the maxi-
mum constraint violation for the inequality constraints. Replace
kgðxkÞþk1 with one if there are no inequality constraints or none
of the inequality constraints are violated. A slight generalization
of Theorem 2.2 in [9] can be used to see that there is a ~d such
that

rgjðxkÞT ~d 6 �1; j 2 JþðxkÞ [ J0ðxkÞ;
rhrðxkÞT ~d ¼ br; r ¼ 1; . . . ;me:

Let d ¼ ~d jjgðxkÞþjj1. Then

rgjðxkÞT d 6 �jjgðxkÞþjj1 6 �gjðxkÞ; j 2 JþðxkÞ [ J0ðxkÞ

and rhrðxkÞT d ¼ �hrðxkÞ; r ¼ 1; . . . ;me. h

The following Theorem shows that there is a big enough C such
that the optimal solution of LPðxkÞ reduces the constraint infeasi-
bility for LPðxkÞ.

Theorem 2. For any xk 2 Rn there is a big enough C such that the
constraint infeasibility is reduced for at least one of the infeasible
constraints, i.e. there is either a j 2 f1; . . . ;mig such that tg

j < gjðxkÞ or
there is an r 2 f1; . . . ;meg such that thþ

r < jhrðxkÞj and th�
r < jhrðxkÞj

for the optimal solution to LPðxkÞ.

Proof. By Lemma 1 there is a ~d such that

rgjðxkÞT ~d 6 �gjðxkÞ; j 2 JþðxkÞ [ J0ðxkÞ;
rhrðxkÞT ~d ¼ �hrðxkÞ; r ¼ 1; . . . ;me:

It is possible to find an ~a such that 0 < ~a < 1, dL
6 ~a~d 6 dU and

rgjðxkÞTð~a~dÞ 6 �gjðxkÞ; j 2 fj : gjðxkÞ < 0g. Choose ðd̂; t̂g ; t̂hþ ; t̂h� Þ
such that

ðd̂; t̂g ; t̂hþ ; t̂h� Þ ¼ ð~a~d; ð1� ~aÞmaxf0; gðxkÞg;
ð1� ~aÞmaxf0;hðxkÞg; ð1� ~aÞmaxf0;�hðxkÞgÞ:

Then ðd̂; t̂g ; t̂hþ ; t̂h� Þ is a feasible solution for LPðxkÞ. Choose bC such
that

� ~a bC Xmi

j¼1

maxf0; gjðxkÞg � ~a bC Xme

r¼1

maxf0; hrðxkÞg

� ~a bC Xme

r¼1

maxf0;�hrðxkÞg < min
dL
6d6dU

frf ðxkÞT dg �rf ðxkÞT d̂:

Looking at the objective function value in the point ðd̂; t̂g ; t̂hþ ; t̂h� Þ
and letting C ¼ bC , it can be seen that
rf ðxkÞT d̂þ bC Xmi

j¼1

t̂g
j þ bC Xme

r¼1

t̂hþ

r þ bC Xme

r¼1

t̂h�

r

¼ rf ðxkÞT d̂þ ð1� ~aÞbC Xmi

j¼1

maxf0; gjðxkÞg

þ ð1� ~aÞbC Xme

r¼1

maxf0;hrðxkÞg þ ð1� ~aÞbC Xme

r¼1

maxf0;�hrðxkÞg

< min
dL
6d6dU

frf ðxkÞT dg þ C
Xmi

j¼1

maxf0; gjðxkÞg

þ C
Xme

r¼1

maxf0;hrðxkÞg þ C
Xme

r¼1

maxf0;�hrðxkÞg;

from the way the constant bC was chosen. Thus, the solution
ðd̂; t̂g ; t̂hþ ; t̂h� Þ is better than any solution ðd; tg ; thþ ; th� Þ to LPðxkÞ
where tg ¼maxf0; gðxkÞg and maxfthþ ; th�g is equal to jhðxkÞj. Hence
the constraint infeasibility is reduced for at least one of the infeasi-
ble constraints. h

Next consider the direction dk found in the first LP problem
solved in each NLP iteration, i.e. dk ¼ dð1Þ. It can be shown that this
search direction is a descent direction for the merit function M.

The direction dk is the solution to the LP problem (1) generated
in the current point xk in the first LP subiteration, i.e. the solution
to the problem LPðxkÞ:

min rf ðxkÞT dþ C
Xmi

j¼1

tg
j þ C

Xme

r¼1

thþ

r þ C
Xme

r¼1

th�

r ;

s:t: rgjðxkÞT d� tg
j 6 �gjðxkÞ; j ¼ 1; . . . ;mi; ð7aÞ

rhrðxkÞT d� thþ

r þ th�

r ¼ �hrðxkÞ; r ¼ 1; . . . ;me; ð7bÞ

d� dU
6 0; ð7cÞ

dL � d 6 0; ð7dÞ

0 6 tg
j 6 maxfgjðxkÞ;0g; j ¼ 1; . . . ;mi; ð7eÞ

0 6 thþ

r 6 jhrðxkÞj; r ¼ 1; . . . ;me; ð7fÞ

0 6 th�

r 6 jhrðxkÞj; r ¼ 1; . . . ;me: ð7gÞ

In order to prove that the directions dk are descent directions a few
lemmas are needed. The first lemma states that the current iterate
is a stationary point to the original problem ðNLPÞ if the optimal va-
lue for the linearized problem is zero and the current iterate xk is
feasible.

Lemma 3. Assume the current iterate xk is feasible in ðNLPÞ. Assume
further that the optimal value of (7), i.e. LPðxkÞ, is zero for an optimal
solution to LPðxkÞ. Then xk is a KKT stationary point for ðNLPÞ.

Proof. Assume the optimal solution is dk. Assume further that
dk–0. Since xk is feasible in ðNLPÞ, it also holds that �d ¼ 0 is a fea-
sible solution to LPðxkÞ. The optimal value of LPðxkÞ is zero by
assumption and thus �d ¼ 0 is an optimal solution to LPðxkÞ as well.
Furthermore, �d ¼ 0 is an optimal solution to the problem

min rf ðxkÞT d;

s:t: rgjðxkÞT d 6 �gjðxkÞ; j ¼ 1; . . . ;mi;

rhrðxkÞT d 6 �hrðxkÞ; r ¼ 1; . . . ;me;

�rhrðxkÞT d 6 hrðxkÞ; r ¼ 1; . . . ;me;

ð8Þ

where the relaxing variables tg , thþ and th� as well as the simple
bounds on d have been dropped and each equality constraint has
been divided into two inequality constraints. Note here that the
relaxing variables tg , thþ and th� are all zero since xk is feasible
and can, therefore, be dropped.
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Note also that if there would be an optimal solution ~d to (8)
such thatrf ðxkÞT ~d < 0, then it would be possible to find a constant
~a such that dL

6 ~a~d 6 dU andrf ðxkÞTð~a~dÞ < 0. Since xk is feasible in
ðNLPÞ, ~a~d will also satisfy the constraints in LPðxkÞ. Thus, d ¼ ~a~d
would be a solution to LPðxkÞ. This contradicts the fact that �d is an
optimal solution to LPðxkÞ and rf ðxkÞT �d ¼ 0.

The dual problem of (8) is

max
Pmi

j¼1
kjgjðxkÞ þ

Pme

r¼1
lþr hrðxkÞ �

Pme

r¼1
l�r hrðxkÞ;

s:t:
Pmi

j¼1
kjrgjðxkÞ þ

Pme

r¼1
lþr rhrðxkÞ �

Pme

r¼1
l�r rhrðxkÞ ¼ �rf ðxkÞ;

k P 0; lþ P 0; l� P 0;
ð9Þ

where k, lþ and l� are the dual variables corresponding to the con-
straints of (8). See [12], for instance, for more information on linear
duality.

Assume kk;lþ;k;l�;k is an optimal solution to (9). By the duality
theorem, the optimal value of the primal and dual problems are
equal and thus,Xmi

j¼1

kk
j gjðxkÞ ¼ 0 ð10Þ

since hðxkÞ ¼ 0 by assumption.
It was also assumed that gjðxkÞ 6 0; j ¼ 1; . . . ;mi and, from the

constraints in (9), it holds that kk
j P 0; j ¼ 1; . . . ;mi. Thus,

kk
j gjðxkÞ 6 0; j ¼ 1; . . . ;mi: ð11Þ

From (10) and (11) one then gets

kk
j gjðxkÞ ¼ 0; j ¼ 1; . . . ;mi:

Let lk ¼ lþ;k � l�;k. Then, from the constraints in (9),

rf ðxkÞ þ
Xmi

j¼1

kk
jrgjðxkÞ þ

Xme

r¼1

lk
rrhrðxkÞ ¼ 0

and

kk P 0:

Thus, the current iterate xk satisfies the first-order Karush–
Kuhn–Tucker conditions for ðNLPÞ and xk is a KKT stationary point
for ðNLPÞ. h

The next lemma provides a practical upper bound for the direc-
tional derivative of the penalty term in the merit function.

Lemma 4. Let ðdk
; tg;k; thþ ;k; th� ;kÞ be an optimal solution to LPðxkÞ, i.e.

(7), with dual variables kg;k, lk, kU;k and kL;k for the constraints
7a,7b,7c,7d, respectively. Assume further that xk is infeasible in ðNLPÞ,
�kj > kg;k

j ; j ¼ 1; . . . ;mi and �lr > jlk
r j; r ¼ 1; . . . ;me. Then

Ddk pðxkÞ <
Xmi

j¼1

kg;k
j rgjðxkÞT dk þ

Xme

r¼1

lk
rrhrðxkÞT dk

:

Proof. By applying the definition of the directional derivatives, one
gets

Ddk pðxkÞ ¼
Xmi

j¼1

�kjDdk gjðxkÞþ þ
Xme

r¼1

�lrDdk jhrðxkÞj

¼
X

j:gjðxkÞ>0

�kjrgjðxkÞT dk þ
X

j:gjðxkÞ¼0

�kjðrgjðxkÞT dkÞþ

þ
X

r:hrðxkÞ>0

�lrrhrðxkÞT dk �
X

r:hrðxkÞ<0

�lrrhrðxkÞT dk

þ
X

r:hrðxkÞ¼0

�lr jrhrðxkÞT dkj: ð12Þ
Since tg;k
j 6maxfgjðxkÞ;0g; j ¼ 1; . . . ;mi; and from (7a), it holds that

rgjðxkÞT dk
6 0 whenever gjðxkÞ > 0 and thus

�kjrgjðxkÞT dk
6 kg;k

j rgjðxkÞT dk ð13Þ

for any j such that gjðxkÞ > 0. Furthermore, for any j ¼ 1; . . . ;mi such
that gjðxkÞ ¼ 0, it holds that rgjðxkÞT dk

6 0 and thus

�kjðrgjðxkÞT dkÞþ ¼ 0:

Also note that whenever hrðxkÞ < 0; r ¼ 1; . . . ;me; the constraints
(7b) and (7g) ensure that rhrðxkÞT dk P 0 and thus

��lrrhrðxkÞT dk
6 lk

rrhrðxkÞT dk
: ð14Þ

Applying a similar reasoning to the rest of the terms in (12) one
obtains

�lrrhrðxkÞT dk
6 lk

rrhrðxkÞT dk ð15Þ

whenever hrðxkÞ > 0; r ¼ 1; . . . ;me; and

�lr jrhrðxkÞT dkj ¼ 0

when hrðxkÞ ¼ 0. Combining the inequalities and equalities above,
one obtains

Ddk pðxkÞ 6
X

j:gjðxkÞ>0

kg;k
j rgjðxkÞT dk þ

X
r:hrðxkÞ>0

lk
rrhrðxkÞT dk

þ
X

r:hrðxkÞ<0

lk
rrhrðxkÞT dk

:

As kg;k
j > 0 only if the corresponding constraint is active, it holds

that

rgjðxkÞT dk P 0

for all j where gjðxkÞ 6 0 and kg;k
j > 0. Also, rhrðxkÞT dk ¼ 0 when

hrðxkÞ ¼ 0. Finally, from Theorem 2, it is known that strict inequality
holds for at least one of the inequality constraints (13)–(15) and
thus

Ddk pðxkÞ <
Xmi

j¼1

kg;k
j rgjðxkÞT dk þ

Xme

r¼1

lk
rrhrðxkÞT dk

;

which is the desired result. h

The following lemma is also needed.

Lemma 5. Let ðdk
; tg;k; thþ ;k; th� ;kÞ be an optimal solution to (7) with

dual variables kg;k, lk, kU;k and kL;k for the constraints 7a,7b,7c,7d
respectively. Assume further that xk is feasible in ðNLPÞ. Then

Ddk pðxkÞ ¼ 0:

Proof. From (12) it can be seen that the directional derivative will
be

Ddk pðxkÞ ¼
X

j:gjðxkÞ¼0

�kjðrgjðxkÞT dkÞþ þ
X

r:hrðxkÞ¼0

�lrjrhrðxkÞT dkj ð16Þ

whenever xk is feasible. As noted in the proof of Lemma 4,

�kjðrgjðxkÞT dkÞþ ¼ 0 ð17Þ

when gjðxkÞ ¼ 0 and

�lr jrhrðxkÞT dkj ¼ 0 ð18Þ

when hrðxkÞ ¼ 0. By combining (16)–(18) one gets Ddk pðxkÞ ¼ 0. h

It can now be proven that the search directions generated by
the SCP algorithm are descent directions for the merit function M.

Theorem 6. Let ðdk
; tg;k; thþ ;k; th� ;kÞ be an optimal solution to (7) with

dual variables kg;k, lk, kU;k and kL;k for the constraints 7a,7b,7c,7d



664 C. Still, T. Westerlund / European Journal of Operational Research 200 (2010) 658–670
respectively. Assume further that �kj > kg;k
j ; j ¼ 1; . . . ;mi and

�lr > jlk
r j; r ¼ 1; . . . ;me. Then Ddk MðxkÞ < 0 or xk is a KKT stationary

point for ðNLPÞ.

Proof. Assume first that xk is infeasible in ðNLPÞ. Using Lemma 4
one gets

Ddk MðxkÞ ¼ rf ðxkÞT dk þ Ddk pðxkÞ

< rf ðxkÞT dk þ
Xmi

j¼1

kg;k
j rgjðxkÞT dk þ

Xme

r¼1

lk
rrhrðxkÞT dk

:

Utilizing the fact that for the dual variables of the linear problem (7)
it holds that

rf ðxkÞ þ
Xmi

j¼1

kg;k
j rgjðxkÞ þ

Xme

r¼1

lk
rrhrðxkÞ þ kU;k � kL;k ¼ 0;

one obtains

Ddk MðxkÞ < ðkL;k � kU;kÞT dk
6 0;

whenever xk is infeasible.
The last inequality is due to the fact that for l ¼ 1; . . . ;n, kL;k

l > 0
only if dk

l is at the lower bound, i.e. dk
l < 0 and kU;k

l > 0 only if dk
l is

at the upper bound, i.e. dk
l > 0.

It remains to look at the cases when xk is feasible. From Lemma
5, one has that Ddk pðxkÞ ¼ 0 and thus

Ddk MðxkÞ ¼ rf ðxkÞT dk
:

If rf ðxkÞT dk
< 0, then Ddk MðxkÞ < 0.

Finally, if rf ðxkÞT dk ¼ 0, then Lemma 3 shows that xk is a KKT
stationary point for ðNLPÞ.

Note that rf ðxkÞT dk
> 0 is clearly not possible since d ¼ 0 is a

feasible solution to (7), whenever xk is feasible. h

The next lemma states that any limit point �x with correspond-
ing search direction �d of an infinite sequence of points fxkg will
have a zero directional derivative in direction �d. The proof is simi-
lar to the one for the inequality constrained case in [19]. Since dif-
ferent termination criteria was used in [19] based on the Goldstein
test for differentiable functions, the proof is provided here as well.
For more information on the Goldstein test see, for instance, [14].

Lemma 7. Assume the SCP algorithm generates an infinite sequence
of points fxkg with corresponding search directions dk and line search
solutions ak. Here dk is the optimal solution to the first LP subproblem
in the NLP iteration starting from xk, i.e. dk ¼ dð1Þ. The variable ak is
the corresponding solution to the line search in direction dk starting
from the point xk. Then, for any limit point �x of the sequence with
corresponding search direction �d, it holds that

D�d Mð�xÞ ¼ 0:

Proof. By the way dk was chosen, it is known from Theorem 6 that
Ddk MðxkÞ 6 0. Assume there exists a limit point �x with correspond-
ing search direction �d such that D�d Mð�xÞ < 0. Since fMðxkÞg is
monotonically decreasing and M continuous, fMðxkÞg converges
to Mð�xÞ. Thus,

MðxkÞ �Mðxkþ1Þ ! 0

when k!1. From (4) and (5), one has that Mðxkþ1Þ 6 Mðxkþ
akdkÞ 6 MðxkÞ and thus

MðxkÞ �Mðxk þ akdkÞ ! 0;

when k!1. From (5) and Ddk MðxkÞ 6 0 one further has

MðxkÞ �Mðxk þ akdkÞP �rakDdk MðxkÞP 0;
and thus akDdk MðxkÞ ! 0 when k!1. Since it was assumed that
D�d Mð�xÞ < 0 and ak P 0, it further holds that ak ! 0þ when
k!1. As gj; j ¼ 1; . . . ;mi and hr; r ¼ 1; . . . ;me are continuously
differentiable,

Ddk Mðxk þ akdkÞ ! Ddk MðxkÞ;
when ak ! 0þ. This contradicts (6) and thus D�d Mð�xÞ ¼ 0 for any
limit point �x. h

It is now possible to show that any limit point of the infinite se-
quence fxkg is a KKT stationary limit point for ðNLPÞ.

Theorem 8. Assume the SCP algorithm generates an infinite sequence
of points fxkg. Then any limit point of this sequence is a KKT stationary
limit point for ðNLPÞ.

Proof. From Lemma 7 it is known that for any limit point �x, with
search direction �d, it holds that D�d Mð�xÞ ¼ 0. Furthermore, from
the proof of Theorem 6, it is known that D�d Mð�xÞ < 0 whenever �x
is infeasible. Thus, the limit point must be feasible. Furthermore,
as the limit point is feasible, one has from Lemma 5 that
D�d pð�xÞ ¼ 0 and thus D�d Mð�xÞ ¼ rf ð�xÞT �d ¼ 0. Consequently, the
optimal value of LPð�xÞ is zero and one may use Lemma 3 to see that
the limit point is a KKT stationary point for ðNLPÞ. h
4. Numerical experience

In order to get experience of the performance of the algorithm,
numerical experiments were performed on known test sets. For the
experiments, Hock and Schittkowski [10] and Schittkowski [17]
test sets were chosen. Model formulations in AMPL publicly avail-
able on the home pages of professor Robert Vanderbei, see [22],
were used. The Hock and Schittkowski test set contained 115 com-
piled problems and the Schittkowski test set 188 problems. Thus,
the numerical experiments covered a total of 303 problems.

Two well-known NLP solvers, LANCELOT [3] version 20010227
and DONLP2 [18] version 20020506 were compared to the SCP
algorithm. The LANCELOT and DONLP2 solvers were chosen as they
are based on different, but comparable, concepts to the SCP algo-
rithm. Both solvers use first-order information from the problems,
thus enabling a comparison of algorithm performance based on the
number of gradient evaluations. Also, source codes were available
for the algorithms, which made it easy to integrate them into the
test environment.

Results are visualized using performance profiles as the number
of problems is quite large.

4.1. LANCELOT

LANCELOT is a trust region-based algorithm used for solving
equality constrained problems. Therefore, inequality constraints
must be converted to equality constraints using slack variables.

In each iteration of the algorithm, the augmented Lagrangian
function

Lðx;l;q; SÞ ¼ f ðxÞ þ
Xme

r¼1

lrhrðxÞ þ
1

2q
Xme

r¼1

srrðhrðxÞÞ2

is approximately minimized subject to simple bounds with a trust
region-based subsolver. Here l are Lagrange multiplier estimates,
q is a penalty parameter and the entries srr of the diagonal matrix
S are positive scaling factors. Then, either the penalty parameter
is updated or a new Lagrange multiplier estimate l is calculated
and the constraint scaling factors srr are updated. The process is re-
peated until the current iterate is considered a stationary point. The
iterate is considered to be a stationary point when the iterate is suf-
ficiently feasible with respect to the original problem and the pro-
jected Lagrangian gradient is sufficiently small.
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4.2. DONLP2

DONLP2 is an SQP method. In each iteration, the quadratic pro-
gramming (QP) problem
Table 1
Number of successfully solved test problems (tolerance � ¼ 10�3).

Hock and Schittkowski (Total: 115) Schittkowski (Total: 188)

SCP 108 176
DONLP2 103 168
LANCELOT 95 172
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Fig. 2. Test results for the Schit
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Fig. 1. Test results for the Hock and
min rf ðxkÞT dþ 1
2 dT Hkd;

s:t: gjðxkÞ þ rgjðxkÞT d 6 0; j ¼ 1; . . . ;mi;

hrðxkÞ þ rhrðxkÞT d ¼ 0; r ¼ 1; . . . ;me;

ð19Þ

is solved. The matrix Hk is an estimate of the Hessian of the aug-
mented Lagrangian function for ðNLPÞ.

A step xkþ1 ¼ xk þ akdk is then taken in the direction dk ob-
tained as a solution to (19). The algorithm ensures that the com-
puted step reduces a merit function sufficiently. The merit
function used is

MðxÞ ¼ f ðxÞ þ
Xmi

j¼1

�kjgjðxÞ
þ þ

Xme

r¼1

�lrjhrðxÞj:
nce Profile
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Schittkowski test set ð� ¼ 10�3Þ.
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The algorithm terminates when the current iterate satisfies the
Karush–Kuhn–Tucker conditions for the problem or no significant
progress can be made. Note the similarities with the proposed
SCP algorithm. The main difference to the proposed algorithm is
that the subproblem solved is a quadratic programming problem
with linear constraints rather than a linear programming subprob-
lem. Surprisingly, as can be seen in the numerical results, the SCP
algorithm required fewer gradient evaluations than DONLP2 for
several test problems. Consequently, the number of LP problems
solved in the SCP algorithm was fewer than the number of QP
problems solved in the DONLP2 algorithm for many of the test
problems.
Performa

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5

sφ
(  

) τ

Fig. 4. Test results for the Schit
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Fig. 3. Test results for the Hock and
4.3. Comparing solver performance

The number of times the gradients were evaluated was used as
the metric for comparing the algorithms. Providing a fair compari-
son of these algorithms is a nontrivial task as they are quite different.
However, the number of times the gradients are evaluated is roughly
equal to the number of subproblems solved, being an LP problem for
the SCP algorithm, a linearly constrained QP problem for DONLP2
and a simple bound constrained NLP problem for LANCELOT. The
amount of work to solve each of these types of subproblems was as-
sumed to be roughly equal, in which case the number of gradient
evaluations provides a fair picture of algorithm performance.
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Note that comparing CPU times on the same platform would
neither be an exact comparison of algorithm performance as mem-
ory handling, choice of programming language and other coding
related issues affect the CPU time quite significantly.

4.4. Performance profiles

The results from the tests are visualized using performance pro-
files, a concept introduced by Dolan and Moré in [5]. Performance
Table 2
Number of successfully solved test problems for SLP version (tolerance � ¼ 10�3).

Hock and Schittkowski (Total: 115) Schittkowski (Total: 188)

SCP 108 176
SCP(SLP) 98 122
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Fig. 5. Comparison of SCP algorithm with version without co
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Fig. 6. Comparison of SCP algorithm with version witho
profiles are constructed by computing an estimate of the probabil-
ity that an algorithm performs within a multiple of the chosen
metric, which may, for instance, be the running time, iteration
count or the number of gradient evaluations. Here the number of
gradient evaluations was used as the criterion for computing the
performance profile.

To illustrate performance profiles, assume the performance of ns

solvers on np problems is compared. Let gp;s be the number of gra-
dient evaluations for solver s to solve problem p. The performance
ratio rp;s for solver s on problem p is defined to be

rp;s ¼
gp;s

min16s6nsfgp;sg
:

If solver s could not solve problem p, let rp;s ¼ C, where C is a big
number.
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The performance of solver s on the entire test set is defined by
the quantity

/sðsÞ ¼
1
np

cardfp : 1 6 p 6 np; rp;s 6 sg;

where the function /s : R! ½0;1� is called the performance profile
and represents the cumulative distribution function of the perfor-
mance ratio. For a particular value of s, the larger the value of
/sðsÞ, the better the performance of solver s.

4.5. Test results

The problems were solved within a precision tolerance
� ¼ 10�3. Additionally, for the SCP algorithm, a value q ¼ 0:1 was
used as the value for the penalty parameter, ddec ¼ 0:2 and
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Fig. 7. Test results for equivalent function calls on
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Fig. 8. Test results for equivalent function cal
dinc ¼ 0:8 for updating the trust region and an initial trust region
dL ¼ �50 and dU ¼ 50. CPLEX was used as the solver for the LP
subproblems.

For the other algorithms default option values were used, ex-
cept for the precision tolerance, which was set to � ¼ 10�3.

A problem was considered successfully solved if the objective
value of the solution found by the solver was within a 2% relative
tolerance to the reported optimal value of the problem and the
solution was feasible within the precision tolerance. Thus, if solver
s found the solution xs and the reported optimal solution is x�, then
the problem was considered successfully solved if gðxsÞ 6 �,
j hðxsÞ j6 � and

f ðxsÞ � f ðx�Þ
maxfjf ðx�Þj;1g 6 0:02:
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Table 1 contains the number of problems solved by each solver
out of the 115 problems defined in the Hock and Schittkowski and
the 188 problems defined in the Schittkowski test collections.

As can be seen from the results, the SCP algorithm performed
well on the test problems, solving most problems from the Hock
and Schittkowski test collection and also performing very well on
the Schittkowski test collection. It was the most robust solver on
both test collections.

Fig. 1 contains the performance profile for the solvers on the
Hock and Schittkowski test collection. SCP performed best on these
problems with respect to the number of gradient evaluations
needed. Also DONLP2 performed well on the test problems, but
DONLP2 had some difficulties with the harder problems and
needed more gradient evaluations than the SCP algorithm for the
more difficult problems.

Fig. 2 shows the performance profile for the Schittkowski test
collection. Here LANCELOT performed a lot better than on the Hock
and Schittkowski collection, but was still slower than the other two
solvers. The SCP algorithm clearly performed best on the test col-
lection being both the fastest solver as well as the most robust sol-
ver on the more difficult problems in the collection, when
comparing the algorithms in terms of the gradient evaluations
needed.

Finally, in Figs. 3 and 4 the performance profile is shown for
the Hock and Schittkowski and the Schittkowski test collections
respectively when the precision tolerance has been set to
� ¼ 10�6. As can be seen from the results, the SCP algorithm per-
formed better for a lower precision tolerance. This may indicate
either that the algorithm has problems with convergence near
the stationary point or that there are some numerical difficulties
in the current implementation. The DONLP2 algorithm clearly
performed better for the higher precision tolerance than for
the lower.

The numerical results clearly indicate that the SCP algorithm
has good convergence properties and may therefore, for instance,
be considered as a subsolver in a branch and bound-based MINLP
algorithm.

4.6. Results without conjugate directions

Although the conjugate directions, see (1c), in the LP subprob-
lems are not needed to prove convergence to a KKT stationary
point, they are essential to improve the convergence speed. As a
comparison, the implementation of the original SCP algorithm de-
scribed in this paper was compared with a version where only one
LP subiteration is done in each NLP master iteration. In other
words, an NLP iteration is stopped after solving one LP subproblem
and no further LP problems are solved with constraints based on
conjugate directions. The alternative version is denoted SCP(SLP)
since restricting the subiterations to one for each NLP iteration will
make the algorithm resemble a traditional sequential linear pro-
gramming (SLP) algorithm. The performance of the SLP version
was significantly worse. In Table 2 the number of successfully
solved problems for the original algorithm is compared with the
number of successfully solved problems for the SLP version.

As can be seen from the table, the original version is much more
robust than the SLP version, particularly on the Schittkowski test
collection. In addition, the algorithms are compared with perfor-
mance profiles, see Figs. 5 and 6. The performance profiles clearly
indicate that the conjugate directions in the LP subproblems are
significant for the performance of the algorithm.

4.7. Results on function evaluations

Finally, the algorithms were compared to each other with re-
gards to the number of function evaluations needed to solve the
problems. As noted in the introduction, the primary goal when
designing the algorithm has not been to minimize the number of
function evaluations. It is assumed that the objective and con-
straints are fast to evaluate. However, for completeness it is inter-
esting to see how the algorithms perform also with regards to the
number of function evaluations.

In Figs. 7 and 8, the equivalent function calls required by each
algorithm are compared. The equivalent function calls are defined
as the number of function evaluations plus n times the number of
gradient evaluations, where n is the size of the problem.

As can be seen from the figures, the DONLP2 algorithm was the
fastest algorithm with respect to the number of equivalent func-
tion calls.

5. Conclusions

In this paper, a new LP-based algorithm for solving continu-
ously differentiable NLP problems has been presented. Numerical
experience on two standard test sets indicate that the algorithm
is competitive with two existing NLP algorithms.

Potential applications for the algorithm is as a subsolver in an
MINLP algorithm. Particularly for convex MINLP problems, the
algorithm is attractive as it provides lower bounds on the optimal
solutions for the convex NLP subproblems in the branch and bound
tree. In [21], promising results for a selection of convex MINLP
problems are reported. Very good results for a special set of diffi-
cult block optimization problems are found in [20].

Another application could be as a solver for large-scale NLP
problems. More work on the algorithm is, however, needed for
such applications.
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