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This study addresses an integrated facility location and inventory allocation problem con-
sidering transportation cost discounts. Specifically, this article considers two types of
transportation discounts simultaneously: quantity discounts for inbound transportation
cost and distance discounts for outbound transportation cost. This study uses an approxi-
mation procedure to simplify DC distance calculation details, and develops an algorithm to
solve the aforementioned supply chain management (SCM) problems using nonlinear opti-
mization techniques. Numerical studies illustrate the solution procedures and the effects of
the model parameters on the SCM decisions and total costs. Results of this study serve as a
reference for business managers and administrators.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The value of inventory is approximately 14% of gross domestic product (GDP) in the United States, while annual trans-
portation and warehousing expenses average approximately nine percent of GDP (Wilson, 2005). Retail companies in the
US spend approximately $14 billion per year on inventory interest, insurance, taxes, depreciation, obsolescence, and ware-
housing. Their logistics activities account for 15–20% of the total cost of finished goods (Menlo, 2007). With such a huge
logistics investment, it is important to make sound decisions for facility locations and inventory allocation in a supply chain
(SC). The design and management of SC network in today’s competitive business environment is one of the most important
and difficult problems that managers face.

In today’s business environment most retail companies have complex distribution networks with several national and
regional distribution centers (DCs). For example, Target, Inc. has three import warehouses, 22 regional distribution centers,
and 1300 retail stores. Frito-Lay, Inc. operates its distribution network with 42 plants, one national DC, and 325 regional DCs
(Erlebacher and Meller, 2000). When goods arrive at US seaports, they must be consolidated by regions at national (import)
DCs. From these national distribution centers (NDCs), goods are shipped to regional distribution centers (RDCs), from which
they are delivered to retail stores. There exists a substantial cost in transportation goods from NDCs to RDCs and from RDCs
to retailers. In practice, discount for larger quantity of freight or longer distance of shipment may be applicable to transpor-
tation economies of scale (Shinn et al., 1996). Since logistics cost plays a key factor in SC design and management decisions,
incorporating transportation cost discounts into SC network design problem is necessary. The current paper is the first SC
network design study to consider transportation cost discounts.

Since the SC network is a large-scale complex system, detailed modeling and optimization are difficult (e.g., see several
examples of detailed discrete modeling in Section 2). Since our focus in this study is the strategic decision making, this article
. All rights reserved.
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presents a two-phase approximation technique to solve the SC network design problem. This approximation leads to a sub-
stantial reduction in the amount of data characterizing the SC system. The resulted simplified system is then much easier for
optimization and comparison studies to explore managerial insights. Specifically, the proposed solution formulates transpor-
tation traveling distance and cost with continuous functions of the sizes of influential area covered by DCs. Since the SC net-
work design involves multiple parameters and the objective function could be nonlinear with bounded constraints, this
study provides heuristic algorithms to solve this optimization problem. The following provide details to further support
the approximation approach.

While discrete models (see examples in Section 2) can provide managers with optimal solutions, their data and compu-
tational requirements increase tremendously as they become more realistic. Moreover, data reliability and model accuracy
are of concerns in practice, especially in dynamically changing business environment. The key idea of the continuous approx-
imation (CA) approach is to define decision variables using continuous functions for reducing SCM problem complexity.
Although the CA approach does not determine the exact location of the distribution centers, it defines a service area for each
distribution center in terms of circular influence areas. Studies by Newell (1973) (and Dasci and Verter, 2001) showed that
influence area with central distribution nodes is a near optimal solution. See Section 2 for more examples of CA approaches
in solving SCM problems.

The goal of this study is to provide logistics network planners with a high-level solution for the integrated facility location
and inventory allocation problem under quantity and distance discounts for transportation costs. Chen (2010) and Chen and
Chang (2010) emphasized the importance of integrated decision-making. Specifically, this study intends to determine the
following SC network design decisions: (1) which RDC locations should be open, (2) which retail store should be served from
which RDC, and (3) how much inventory should be held at the NDCs and the RDCs? We consider both situations when order
quantity is the same across all RDCs and when order quantity is different at RDCs in different regions. Two heuristic algo-
rithms are provided to solve the problems. Numerical study illustrates the solution procedures and impacts of the relevant
model parameters on SC design decisions and profits.

The remainder of this study is organized as follows. Section 2 reviews key literature relevant to the studies. Section 3 de-
scribes the problem including assumptions and notations. Section 4 formulates the model and develops a heuristic algorithm
for solving the problem. Section 5 presents numerical examples and analyses to illustrate the solution procedure and impact
of changing system parameters. Section 6 extends the procedure to solve more realistic problems. Finally, Section 7 con-
cludes the study.

 
 

 

2. Literature review

2.1. Supply chain network design

In recent years, many retail companies have explored better ways for designing and managing their SC for achieving cost
savings. There are several publications in the area of integrated facility location and inventory decisions. Shen (2007) has
made a complete review of the supply chain design literature and of current practices. Daskin’s (1995) fixed-charge facility
location model uses the linear inventory cost function to determine DC locations achieving the least cost. Nozick and Turn-
quist (1998) approximated the safety stock cost at each DC using a linear regression function of the number of DCs. They
then used this function to estimate the inventory cost function. Their model stocks inventory at the DC and replenishes it
using a one-for-one policy. Nozick and Turnquist (2001) extended their previous model by adding service responsiveness
and uncertainty to DC delivery time. They defined service responsiveness in terms of stock-outs and time-based delivery.
Stock-outs are incorporated in the safety stock function while the time-based delivery constraint is modeled explicitly as
coverage distance.

Daskin et al. (2002) and Shen et al. (2003) proposed a set-covering model to consider location and allocation policies for a
DC-retailer network with risk pooling. They successfully showed that this problem can be solved efficiently when the DC
demand is deterministic or Poisson distributed. Shu et al. (2005) extended this model to consider arbitrary demand distri-
butions. They presented computational results for several instances, with sizes ranging from 40 to 500 retailers. Shen (2005)
considered a location-allocation problem for a multi-commodity supply chain. Shen and Daskin (2007) extended the nonlin-
ear integrated location-inventory model to incorporate a measure of customer service quality. Shen and Qi (2007) removed
the assumption in Shen et al. (2003). They modeled the shipment from a DC to its customers using a vehicle routing model
instead of the linear direct shipping model, and proposed a Lagrangian relaxation based solution algorithm. Javid and Azad
(2010) established a heuristic method based on a hybridization of Tabu Search and Simulated Annealing to solve the location,
routing and inventory problem.

For location-allocation and inventory policies, Teo and Shu (2004) proposed a set-covering model to design a two-echelon
warehouse-retailer network under deterministic retailers demands. Their problem was to determine the optimal ware-
houses locations, allocate retailers to warehouses, and make inventory decisions for warehouses and retailers. Their objec-
tive was to minimize the total two-echelon inventory, transportation, and facility location cost. They provided
computational results for problems involving 20 warehouses and 100 retailers. Romeijn et al. (2007) extended the problem
to consider an additional cost term that may represent costs related to safety stocks or capacity considerations. They studied
the structure of the pricing subproblem and developed an algorithm to solve it, providing computational results for problems
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with 10 or 20 DCs and 10–70 retailers. Snyder et al. (2007) presented a stochastic location model with risk pooling and devel-
oped a Lagrangian-relaxation-based exact algorithm to solve it. Their goal was to determine optimal DC locations, assign
retailers to DCs, and set inventory levels at DCs to minimize the total expected cost. Naseraldin and Herer (2008) believed
both retail outlets and customers are located on a finite homogenous line segment. They determined the optimal values of
the number of retail outlets, the location of each retail outlet, and the replenishment inventory levels at each retail outlet.
Park et al. (2010) considered a single-sourcing network design problem for a three-level supply chain where risk-pooling
strategy and DC-to-supplier dependent lead times are considered. The focus of our study is to simultaneously determine
RDC locations, retail store allocation, and inventory level at the NDCs and the RDCs. The study is more comprehensive
and covers transportation cost discount issues, which are usually not considered in supply chain network designs.

2.2. Transportation cost discount

Transportation is a significant component of supply chain operations. Considering transportation costs in inventory
replenishment decisions can reduce the total SC cost (Toptal, 2009). In many practical situations, discounts for larger quan-
tities of freight may be applicable to transportation economies of scale, in terms of the number of unit loads delivered (Shinn
et al., 1996). Lee (1986) considered discounted per-truck costs for larger replenishment quantities. Shinn et al. (1996) deter-
mined pricing and ordering decisions under discounted freight costs and delay in payments. Sheen and Tsao (2007) dis-
cussed channel coordination issue under trade credit and freight cost discounts. They assumed that the transportation
cost includes quantity discounts due to economies of scale. Glickman and White (2008) addressed optimal vendor selection
problem in a multiproduct supply chain with truckload discount. Our study considers quantity discounts for transportation
cost between NDCs and RDCs.

Distance is another important dimension of transportation charge. Transportation cost for service vary with the distance
over which the freight must be transferred (Ballou, 2004)). This is reasonable because the amount of fuel used depends on
distance, and the amount of labor is a function of distance. Thus, the longer transport distance the products will be trans-
ferred, the lower the unit distance transportation cost will be. Our study assumes that the transportation cost consists of
a fixed cost and an additional variable cost paid per unit distance. This study considers the distance discounts for transpor-
tation cost between RDCs and retailers. This is the first study to consider two different transportation discounts simulta-
neously in the supply chain network design problem.

2.3. Continuous approximation (CA) approach

Continuous approximation models, which use continuous functions to represent distribution of retailer location and de-
mand, have been developed to provide insights into complicated mathematical programming models (Shen, 2007). It is also
widely recognized that continuous models should supplement mathematical programming models (Hall, 1986). Geoffrion
(1976) studied a continuous model for warehouse location in which a warehouse serves demand that is distributed uni-
formly over a plane. Erlenkotter (1989) used a General Optimal Market Area model to determine optimal area served by
a single production point when demand is assumed to be distributed uniformly. Daganzo (1996) presented CA techniques
for network designing problem, and focused on vehicle dispatch scheduling. Langevin et al. (1996) reviewed CA approaches
and developed a method for solving freight distribution problems. They showed that combination of CA models and optimi-
zation methods can be a powerful tool for SCM studies. Erlebacher and Meller (2000) used a CA approach to formulate a non-
linear integer location/inventory model. Pujari et al. (2008) utilized a CA procedure to determine optimal number and size of
shipments while considering issues of location, production, inventory, and transportation. Murat et al. (2010) provided a CA
framework for solving location-allocation problems with dense demand. Murat et al. (2011) formulated the two-facility loca-
tion-allocation problem as a multi-dimensional boundary value problem and developed a multi-dimensional shooting algo-
rithm to solve it. Their methodology is suitable for problems where allocation decisions can be reasonably approximated by
polygons. These examples show that CA approaches are becoming common today in solving SCM problems, especially for
large size data. In our study, the proposed solution defines the input data in terms of continuous functions and is capable
of formulating these functions for a data set of any size.

3. Problem description

The network studied in this study is a three-echelon supply chain with an outside supplier at level three selling goods to
NDCs. The NDCs are located at level two, and help consolidate shipments arriving from overseas manufacturers and deliver
them to the RDCs. The RDCs are located at level one, and help consolidate shipments and pool risk. The retail stores at level
zero meet the demands from end customers. Goods flow from higher-level facilities to the lower-level facilities until they
reach level zero (see Fig. 1).

The mathematical model in this study is based on the following assumptions:

1. The location of the NDC is known and fixed.

 
 

 



Fig. 1. Multi-level supply chain network.
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2. Demand per unit time for retail store in cluster Ci is an independent and identically distributed Poisson process with
rate ki.

3. Each RDC’s influence area is close to circular. Service regions have somewhat irregular shapes as opposed to circles,
hexagons, or squares in the economics literature. This irregular service area is shown to have little effect on the opti-
mal solution (Dasci and Verter, 2001). Moreover, each RDC is located in the center of the influence area.

4. The constraints from capacity limitations at the NDCs and the RDCs are ignored.
5. It is a common practice in multi-echelon inventory studies to assume that the order quantity Qr is the same across all

RDCs (Deuermeyer and Schwarz, 1981 and Ganeshan, 1999).
6. Replenishments occur in very short time for the RDC-Retailer echelon, i.e. lead time can be ignored for the RDC-Retai-

ler echelon.
7. The expected lead time for the NDC-RDC echelon is l.
8. Each retailer is assigned to a particular RDC and served only by that RDC.
9. The freight carrier offers quantity discounts for transportation cost between NDCs and RDCs due to economies of scale.

10. For transportation cost between RDCs and retailers, the transportation cost contains a fixed cost and an additional var-
iable cost paid per unit distance.

This study uses the following notations.
Fr
 facility cost of opening each RDC r

Ari
 influence area for each RDC r in cluster Ci, where i = 1,2, . . . ,N

di
 store density in cluster Ci
ki
 demand rate for retail store in cluster Ci
n
 length of the planning horizon

Qn
 ordering quantity for NDC

Qr
 ordering quantity for RDC r in each cluster

Tj
 inbound transportation cost for Qr in cluster Ci, Bj�1 < Qr 6 Bj, where Tj�1 < Tj and Tj�1/Bj�1 > Tj/Bj, j = 1,2, . . . ,n

Bj
 jth inbound transportation cost break quantity, j = 1,2, . . . ,n, where B0 < B1<� � �<Bn < Bn+1 with B0 = 0 and Bn+1 =1

Cf
 fixed transportation cost per item
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Cv
 variable transportation cost per mile per item 
fr
 constant that depends on the distance metric and shape of the RDC r service region 

Rn
 ordering cost for NDC

Rr
 ordering cost for each RDC r 

hn
 inventory holding cost for NDC

hr
 inventory holding cost for each RDC r

l
 expected lead time for the NDC-RDC echelon

Ci
 cluster i in the given NDC partition
First, consider a given NDC partition and suppose that (C1, C2, . . . ,CN) are the clusters within the given NDC partition. Let
Ari

be the size of the influence area for each RDC in cluster Ci. This model calculates the components of the total network cost
as follows.

(1) The total facility cost is given by multiplying the facility cost of opening each RDC with the number of RDCs, namely,
Fr

Ci
Ari

.
(2) Consider two components for the transportation cost: inbound and outbound costs. The inbound cost is the cost of

sending shipments from the NDC to the RDC. The outbound cost is the cost of shipping goods from the RDC to the
retailers located within its influence area.
(2.1) The total inbound transportation cost is

PN
i¼1 Tj

nkidiCi
Qr

� �
, where Tj = a � j � [1 � b(j � 1)] is the inbound transpor-

tation cost for quantity Qr, a and b are positive constants and j = 1, 2, . . . , n. When the ordering quantity Qr is
within Bj�1 < Qr 6 Bj, the inbound transportation cost for Qr is Tj. The form of Tj is refer to Lee (1986), Shinn
et al. (1996) and Sheen and Tsao (2007).

(2.2) Assuming ‘‘close to circular’’ service regions with the facility at the center, the average outbound distance trav-
eled by each item is fr

ffiffiffiffiffiffiffiffiffiffiffi
ArðxÞ

p
(Dasci and Verter, 2001). For each item, the outbound transportation cost is

Cf þ Cv fr

ffiffiffiffiffiffi
Ari

p
which includes a fixed transportation cost Cf and a variable transportation cost Cv fr

ffiffiffiffiffiffi
Ari

p
based

on the outbound distance traveled. Thus, the outbound transportation cost satisfies that the longer transport dis-
tance the products will be transferred, the lower the unit distance transportation cost will be. The outbound
transportation cost for all items in cluster Ci is ðCf þ Cv fr

ffiffiffiffiffiffi
Ari

p
ÞðnkidiCiÞ. Therefore, the total outbound transpor-

tation cost for the given NDC partition is
PN

i¼1 ðCf þ Cv fr

ffiffiffiffiffiffi
Ari

p
ÞðnkidiCiÞ

� �
.

(3) The total NDC ordering cost is
PN

i¼1 Rn
nkidiCi

Qn

� �
.

(4) The total RDC ordering cost is
PN

i¼1 Rr
nkidiCi

Qr

� �
.

(5) From Deuermeyer and Schwarz (1981) and Mangotra et al. (2009), the total NDC inventory holding cost includes reg-

ular stock cot and safety stock cost: hn
Qn
2 þ Za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1lkidiCi

q� �
, where a is the service level at the NDC.

(6) The total RDC inventory holding cost is
PN

i¼1
Ci
Ari

hr Qr
2

� �
, where Ci

Ari
is the number of RDCs in cluster Ci, where i = 1, 2, . . . , N.

The quantity hr Qr
2 is the inventory holding cost for a RDC. Therefore, the total RDC inventory holding cost for all clusters

is
PN

i¼1
Ci
Ari

hr Qr
2

� �
.

Therefore, the total network cost is
TNCðAri
;Q n;Q rÞ ¼

XN

i¼1

Fr
Ci

Ari

� �
þ
XN

i¼1

Tj
nkidiCi

Q r

� �
þ
XN

i¼1

ðCf þ Cv fr

ffiffiffiffiffiffi
Ari

q
ÞðnkidiCiÞ

h i
þ
XN

i¼1

Rn
nkidiCi

Qn

� �

þ
XN

i¼1

Rr
nkidiCi

Q r

� �
þ hn

Q n

2
þ Za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
lkidiCi

r !
þ
XN

i¼1

hr
Ci

Ari

Q r

2

� �
: ð1Þ
4. Solution methodology

This study uses a two-phase approximation technique (Mangotra et al., 2009) to solve the supply network design prob-
lem. The main idea for the two-phase approximation method is to divide the network into smaller regions over which the
discrete variable can be modeled using the slow varying functions. Phase-I approximation uses the Grid Cover-Couple ap-
proach to partition the service region into sub-regions. A mesh of equal sized squares is designed to cover the given NDC
partition. The geometry of the square-mesh needs to satisfy that the demand is slow varying within each grid square. Within
the given NDC partition, there are grids and each grid has a density associated with it. The grids with similar densities can be
clustered together to form areas over which the store density function is slow varying. Using the method the given NDC
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partition is covered with clusters (C1, C2, . . . , CN). Clusters (C1, C2, . . . , CN) exist within the given NDC partition such that the
store density is nearly constant over each cluster.

Phase-II approximation uses the continuous approximation technique to model the facility location and inventory allo-
cation problem over each cluster within the NDC partition. Section 3 models the total network costs. Using the size of the
optimal influence area along with the information on the area for each cluster, the total number of RDCs in each cluster
can be calculated. The total number of RDCs in the NDC partition is obtained by summing over the number of RDCs in each
cluster. For more information about Phase-I and Phase-II approximations, please see Mangotra et al. (2009).

The problem analyzed here is to determine the optimal influence area for each RDC Ari
, ordering quantity for each RDC Qr

and ordering quantity for NDC Qn to minimize total network cost TNCðAri
;Qn;QrÞ. Since Qr is affected by quantity discounts

for transportation cost, first deal with the decisions Ari
and Qn under a given Qri

. For a given Qri
, we have

 
 

 

@2TNCðAri
;Q njQ rÞ

@A2
ri

¼
XN

i¼1

2FrCi

A3
ri

 !
þ
XN

i¼1

�Cv frnkidiCi

4A3=2
ri

 !
þ
XN

i¼1

hrCiQ r

A3
ri

 !
; i ¼ 1;2; . . . ;N;

@2TNCðAri
;Q njQ rÞ

@Q 2
n

¼ 2Rn

PN
i¼1ðnkidiCiÞ

Q 3
n

> 0;

@2TNCðAri
;Q njQ rÞ

@Ari
@Arj

¼ 0; j ¼ 1;2; . . . ;N; but i – qj;

@2TNCðAri
;Q njQ rÞ

@Ari
@Q n

¼ 0:
The threshold of Fr is
XN

i¼1

Cv frnkidiCi

4A3=2
ri

 !
�
XN

i¼1

hrCiQr

A3
ri

 !( ) XN

i¼1

2Ci

A3
ri

 , !
:

This means
@2TNCðAri
;Q njQ rÞ

@A2
ri

> 0
when
Fr >
XN

i¼1

Cv frnkidiCi

4A3=2
ri

 !
�
XN

i¼1

hrCiQ r

A3
ri

 !( ) XN

i¼1

2Ci

A3
ri

 , !
:

Since the facility opening cost Fr is large,
@2TNCðAri

;Q n jQr Þ
@A2

ri

>0 is satisfied in the general case. The Hessian matrix is then
Hi ¼

@2TNC
@A2

r1

0 � � � � 0 0

0 @2TNC
@A2

r2

� � 0
� � � � � �
� � � � � �
� � � � � �
� � � 0 �
0 � � � � 0 @2TNC

@A2
rN

0

0 0 � � � � 0 @2TNC
@Q2

n

2
666666666666666664

3
777777777777777775

; i ¼ 1;2; . . . ;N þ 1:
Since @2TNC
@A2

ri

> 0 and @2TNC
@Q2

n
> 0, we know that jHij > 0 for i = 1, 2, . . . , N + 1. From the minimum theorem in Winston (2004), we

know that TNCðAri
;QnjQrÞ is a convex function of Ari

and Qn. This means that the optimal Ari
and Qn can be obtained by solving

@TNCðAri
;Qn jQr Þ

@Ari
¼ 0 and

@TNCðAri
;Qn jQr Þ

@Qn
¼ 0:
Ari
ðQ rÞ ¼

2Fr þ hrQr

Cv frnkidi

� �2=3

; ð2Þ

Qn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rn

PN
i¼1nkidiCi

hn

s
: ð3Þ
Eqs. (2) and (3) lead to Property 1.
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Property 1.

(a) The influence area for each RDC Ari
increases as the ordering quantity for RDC Qr or the facility cost of opening each RDC Fr

increase.
(b) The ordering quantity for NDC Qn increases as the inventory holding cost for NDC hn decreases or the ordering cost for NDC

Rn increases.
(c) The influence area for each RDC Ari

decreases as variable transportation cost Cv increases. However, Ari
will not change as Cf

changes.

Substituting Eqs. (2) and (3) into Eq. (1) yields

 
 

 

TNCðQ rÞ ¼
XN

i¼1

FrCi
Cv frnkidi

2Fr þ hrQ r

� �2=3
" #

þ
XN

i¼1

Cf þ Cv fr
2Fr þ hrQ r

Cv frnkidi

� �1=3
" #

nkidiCið Þ
( )

þ
XN

i¼1

hrCiQ r

2
Cv frnkidi

2Fr þ hrQ r

� �2=3
" #

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hnRn

XN

i¼1
nkidiCið Þ

r
þ hnZa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
lkidiCi

r
þ
XN

i¼1

Rr
nkidiCi

Qr

� �

þ
XN

i¼1

Tj
nkidiCi

Q r

� �
: ð4Þ
For a specific Tj with respect to Bj < Qr 6 Bj+1, determine the optimal Q �r , which minimizes TNC(Qr). If the optimal Q �r satisfies
Bj < Qr 6 Bj+1, it is the valid optimal Q �r with respect to Bj < Qr 6 Bj+1. If this optimal Q �r does not satisfy Bj < Qr 6 Bj+1, it is an
invalid Q �r with respect to Bj < Qr 6 Bj+1. Consider the two following cases.

4.1. Case A: a valid optimal Q �r is found

Assuming that a valid optimal Q �r falls in the range of Bj��1 < Qr 6 Bj� , we have the following lemma.

Lemma 1. If the valid optimal Q �r with respect to Bj��1 < Qr 6 Bj� is found, the optimal Q ��r which minimizes TNC(Qr) occurs at this
valid optimal Q �r or at Bj with j < j⁄.
Proof. Because Tj < Tj+1, the minimal TNC associated with Tj is less than the minimal TNC associated with Tj+1. Therefore, if the
valid optimal Q �r with respect to Bj��1 < Q r 6 Bj� is found, we do not need to search for corresponding Q �r in ranges beyond Bj� .
When the valid optimal Q �r with respect to Bj��1 < Qr 6 Bj� is found, each corresponding Q �r > Bj holds for any j: 1 < j 6 j⁄ � 1.
In other words, Eq. (4) yields an invalid optimal Q �r with respect to Bj��1 < Qr 6 Bj� for any j, 1 < j 6 j⁄ � 1. Assume that Q �r is
the point for minimizing TNC(Qr). Fig. 2 indicates that TNC(Qr) is a convex–concave function of Qr, where TNC(Qr) is convex for
Q r < QI

r and concave for Qr > Q I
r . TNC(Qr) is a decreasing function of Qr when 0 < Qr < Q �r . Because Q �r > Bj holds for any j,

1 < j 6 j⁄ � 1, the minimum value of TNC(Qr) occurs at Bj for any j, 1 < j 6 j⁄ � 1. Therefore, it is only necessary to consider
Q �r and Bj with all j < j⁄ as candidates for the optimal Q ��r . h

Lemma 1 states that the optimal Q ��r may occur at the valid optimal Q �r or at Bj with j < j⁄. If the order quantity Qr is Bj, the optimal
influence area for RDC r is A�ri

ðBjÞ (in Eq. (2) Qr is replaced by Bj). Therefore, substituting Bj, Qn and Ari
ðBjÞ into Eq. (1) leads to
TNCðNjÞ ¼
XN

i¼1

FrCi
Cv frnkidi

2Fr þ hrBj

� �2=3
" #

þ
XN

i¼1

Cf þ Cv fr
2Fr þ hrBj

Cv frnkidi

� �1=3
" #

nkidiCið Þ
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hrCiBj

2
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2Fr þ hrBj
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hnRn
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i¼1
lkidiCi

r
þ
XN

i¼1

Rr
nkidiCi

Bj

� �
þ
XN

i¼1

Ti;j
nkidiCi

Bj

� �
: ð5Þ
Fig. 2. Shape of TNC(Qr).
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It is then possible to search for an optimal Bj to minimize TNC(Bj), and, in turn, calculate the optimal values of Ari
ðBjÞ; Qn and

TNC(Bj).

4.2. Case B: a valid optimal Q �r is not found

If a valid optimal Q �r is not found, the Qr that minimizes TNC(Qr) with respect to each range of Bj�1 < Qr 6 Bj is Bj. Therefore,
the optimal Q ��r that minimizes TNC(Qr) can be found by comparing all values of TNC(Bj) with j 6 n. The way to determine
decisions and cost when the order quantity is Qr = Bj is the same as in Case A.

Based on the formulation for both of these cases, this study uses the following heuristic algorithm to obtain the optimal
ordering quantity Q ��r .

Algorithm 1.

Step 1. Beginning with the freight cost Tj=1, search for the order quantity Qr that minimizes Eq. (5) until a valid optimal Q �r is
found (i.e. Q �r must fall within the corresponding break quantity range, Bj�1 < Qr 6 Bj) or j = n.

Step 2. If a valid optimal Q �r is found, let the corresponding break quantity range be Bj��1 < Q 6 Bj� and go to Step 3.1; other-
wise go to Step 3.2.

Step 3. Select the optimal order quantity.
3.1: Compare the total network cost TNCðQ �r Þ and TNC(Bj) with all j < j⁄. Select the value ðQ �r or Bj) to minimize these

costs; then stop.
3.2: Compare the annual profit TNC(Bj) for all j 6 n. Select the value Bj that minimizes the total network cost; then stop.

5. Numerical study

This section presents numerical study to illustrate the proposed solution approach and provide quantitative insights. The
goals of the numerical study in this study are as follows:

1. To illustrate the procedures of the solution approach;
2. To discuss the impacts of the related parameters on decisions and cost.

5.1. Numerical example

To illustrate the algorithm described above, consider the parameters of a product in a distribution company: Fr = 100,000;
C1 = 10,000; C2 = 8000; C3 = 6000; hr = 1; hn = 1; Rr = 30; Rn = 30; Cf = 10; Cv = 10; k1 = 11; k2 = 10; k3 = 9; n = 12; d1 = 0.06;
d2 = 0.05; d3 = 0.04; fr = 0.01; Z0.9 = 1.645, l = 0.0083, Tj = 1000j(1 � 0.01(j � 1)). Table 1 shows the computed results after
applying Algorithm 1. The optimal solution occurs when j = 3, optimal ordering quantity for each RDC is Q ��r ¼ 13557, and
the total network cost is TNC⁄ = 3.15316 � 106. Eqs. (2) and (3) can then show that the optimal influence area for each
RDC in cluster C1 is A�r1

¼ 4173:75, the optimal influence area for each RDC in cluster C2 is A�r2
¼ 5022:37, the optimal influ-

ence area for each RDC in cluster C3 is A�r3
¼ 6252:02, and the ordering quantity for NDC is Q �n ¼ 3031. Fig. 3 shows the gra-

phic illustrations of TNC versus different decision variables.
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Table 1
Result of the algorithm.

j Q�r Bj TNC

1 – 5000 3.18911 � 106

2 – 10,000 3.15264 � 106

⁄3 13,557 – 3.15316 � 106

4 15,605 – 3.16303 � 106

5 25,000 3.16563 � 106



Fig. 3. Graphic illustrations of TNC versus different decision variables.

Table 2
Influence of freight cost Tj = a � j � [1 � b(j � 1)], with different a and b.

a b

0.01 0.02 0.03

500 Q��r ¼ 7874 Q��r ¼ 7835 Q��r ¼ 7795
Q�n ¼ 3031 Q�n ¼ 3031 Q�n ¼ 3031
A�r1
¼ 4099:36 A�r1

¼ 4098:85 A�r1
¼ 4098:33

A�r2
¼ 4932:86 A�r2

¼ 4932:24 A�r2
¼ 4931:62

A�r3
¼ 6140:60 A�r3

¼ 6139:83 A�r3
¼ 6139:05

TNC⁄ = 3.12526 � 106 TNC⁄ = 3.12507 � 106 TNC⁄ = 3.12487 � 106

1000 Q��r ¼ 13557 Q��r ¼ 13417 Q��r ¼ 13275
Q�n ¼ 3031 Q�n ¼ 3031 Q�n ¼ 3031
A�r1
¼ 4173:75 A�r1

¼ 4171:92 A�r1
¼ 4170:06

A�r2
¼ 5022:37 A�r2

¼ 5020:17 A�r2
¼ 5017:94

A�r3
¼ 6252:02 A�r3

¼ 6249:28 A�r3
¼ 6246:5

TNC⁄ = 3.15316 � 106 TNC⁄ = 3.15248 � 106 TNC⁄ = 3.15179 � 106

1500 Q��r ¼ 19193 Q��r ¼ 18887 Q��r ¼ 18576
Q�n ¼ 3031 Q�n ¼ 3031 Q�n ¼ 3031
A�r1
¼ 4246:86 A�r1

¼ 4242:90 A�r1
¼ 4238:88

A�r2
¼ 5110:35 A�r2

¼ 5105:58 A�r2
¼ 5100:75

A�r3
¼ 6361:54 A�r3

¼ 6355:61 A�r3
¼ 6349:58

TNC⁄ = 3.18011 � 106 TNC⁄ = 3.17866 � 106 TNC⁄ = 3.17719 � 106
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5.2. Numerical analysis

This section chooses different values of a and b for Tj to reflect different freight costs and discount rates. Table 2 shows the
influence of these various values on decision-making and cost. The results are as follows:

1. When a increases, the optimal ordering quantity for each RDC Q ��r , the optimal influence area for each RDC A�ri
and the

total network cost TNC⁄ all increase. When the freight cost increases, it is reasonable for RDCs to increase their ordering
quantity to reduce ordering frequency. Also, the company will increase each RDC’s influence areas to reduce the number
of RDCs. This effectively minimizes the total network cost.

2. When b increases, the optimal ordering quantity for each RDC Q ��r , the optimal influence area for each RDC A�ri
and the

total network cost TNC⁄ all decrease. When the discount increases, it is reasonable to decrease RDC’s ordering quantity
and RDC’s influence area, to take the advantage of quantity freight cost discounts more times.

It is also important to discuss the influence of the fixed transportation cost Cf and variable transportation cost Cv. This
study includes a sensitivity analysis to further examine the effects of these two parameters. Table 3 provides the following
management implications:

1. When Cf increases, the total network cost TNC⁄ increases. However, the optimal ordering quantity for each RDC Q ��r , the
optimal ordering quantity for NDC Q �n, and the optimal influence area for each RDC A�ri

do not change as Cf increases. This
means that the fixed transportation cost does not affect the optimal ordering quantities for each RDC, and that the opti-
mal ordering quantity for NDC and the optimal influence area for each RDC. This verifies Property 1(c).

2. When Cv increases, the optimal ordering quantity for each RDC Q ��r and the optimal influence area for each RDC A�ri

decrease. However, the total network cost TNC⁄ increases. This verifies Property 1 (c). When the variable transportation
cost increases, it is reasonable to decrease RDC’s ordering quantity and RDC’s influence area to reduce transportation
costs.

The last experiment performed a sensitivity analysis to investigate the effects from ordering cost and inventory holding
cost, including ordering costs for NDC and RDC (i.e. Rn and Rr) and inventory holding costs for NDC and RDC (i.e. hn and hr).
This experiment was conducted by changing ordering costs up to ±67% and by changing inventory holding costs up to ±50%.
Table 4 shows the numerical results. The results are as follows:

1. When the ordering cost for NDC Rn increases, the optimal ordering quantity for NDC Q �n and total network cost TNC⁄ both
increase. When ordering cost for RDC Rr increases, the optimal ordering quantity for RDC Q ��r , the optimal influence area
for each RDC A�ri

, and the total network cost TNC⁄ all increase. If the ordering cost increases, it is reasonable that the com-
pany will increase the ordering quantity to reduce replenishment frequency. The company will also likely increase each
RDC’s influence areas to reduce the number of RDCs as the ordering cost increases.

 
 

 

Table 3
Influence of different Cf and Cv.

Cf Cv

5 7.5 10

10 Q��r ¼ 19787 Q��r ¼ 14954 Q��r ¼ 13557
Q�n ¼ 3031 Q�n ¼ 3031 Q�n ¼ 3031
A�r1
¼ 6753:65 A�r1

¼ 5078:16 A�r1
¼ 4173:75

A�r2
¼ 8126:83 A�r2

¼ 6110:67 A�r2
¼ 5022:37

A�r3
¼ 10116:6 A�r3

¼ 7606:78 A�r3
¼ 6252:02

TNC⁄ = 2.57291 � 106 TNC⁄ = 2.87623 � 106 TNC⁄ = 3.15316 � 106

50 Q��r ¼ 19787 Q��r ¼ 14954 Q��r ¼ 13557
Q�n ¼ 3031 Q�n ¼ 3031 Q�n ¼ 3031
A�r1
¼ 6753:65 A�r1

¼ 5078:16 A�r1
¼ 4173:75

A�r2
¼ 8126:83 A�r2

¼ 6110:67 A�r2
¼ 5022:37

A�r3
¼ 10116:6 A�r3

¼ 7606:78 A�r3
¼ 6252:02

TNC⁄ = 8.69771 � 106 TNC⁄ = 9.00103 � 106 TNC⁄ = 9.27796 � 106

100 Q��r ¼ 19787 Q��r ¼ 14954 Q��r ¼ 13557
Q�n ¼ 3031 Q�n ¼ 3031 Q�n ¼ 3031
A�r1
¼ 6753:65 A�r1

¼ 5078:16 A�r1
¼ 4173:75

A�r2
¼ 8126:83 A�r2

¼ 6110:67 A�r2
¼ 5022:37

A�r3
¼ 10116:6 A�r3

¼ 7606:78 A�r3
¼ 6252:02

TNC⁄ = 1.63537 � 107 TNC⁄ = 1.66570 � 107 TNC⁄ = 1.69340 � 107



Table 4
The effects from ordering cost and inventory holding cost.

Parameter Q��r Q�n A�r1
A�r2

A�r3
TNC⁄

Rn = 10 13,557 1750 4173.75 5022.37 6252.02 3.15188 � 106

Rn = 30 13,557 3031 4173.75 5022.37 6252.02 3.15316 � 106

Rn = 50 13,557 3913 4173.75 5022.37 6252.02 3.15401 � 106

Rr = 10 13,511 3031 4173.17 5021.64 6251.11 3.15293 � 106

Rr = 30 13,557 3031 4173.75 5022.37 6252.02 3.15316 � 106

Rr = 50 13,604 3031 4174.35 5023.10 6252.93 3.15338 � 106

hn = 0.5 13,557 4287 4173.75 5022.37 6252.02 3.15227 � 106

hn = 1 13,557 3031 4173.75 5022.37 6252.02 3.15316 � 106

hn = 1.5 13,557 2475 4173.75 5022.37 6252.02 3.15384 � 106

hr = 0.9 14,275 3031 4164.49 5011.23 6238.16 3.14971 � 106

hr = 1 13,557 3031 4173.75 5022.37 6252.02 3.15316 � 106

hr = 1.1 12,904 3031 4182.56 5032.97 6265.22 3.15643 � 106
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2. When the inventory holding cost for NDC hn increases, the optimal ordering quantity for NDC Q �n decreases but the total
network cost TNC⁄ increases. This verifies Property 1(b). When the inventory holding cost for RDC hr increases, the opti-
mal ordering quantity for RDC Q ��r decreases, while the optimal influence area for each RDC A�ri

and the total network cost
TNC⁄ both increase. It is reasonable that when the inventory holding cost increases, the company will decrease the order-
ing quantity in an effort to lower inventory costs. They will increase each RDC’s influence areas to reduce the number of
RDCs as the inventory holding cost increases.

6. Extension: Different ordering quantity for RDC in different cluster

This section relaxes Assumption 5 to consider different ordering quantities for RDCs in different clusters and determine
the difference between equal ordering quantity and different ordering quantity. First, consider the following notations:
Qri

ordering quantity for RDC in cluster Cni , where i = 1,2, . . . ,N
Ti,j
 inbound transportation cost per item for Qri
; Bj < Qri

6 Bjþ1, where Ti,j < Ti,j + 1 and Ti,j /Bj > Ti,j + 1/Bj+1, j = 1,2, . . . ,n
The total network cost is
TNCðAri
;Q n;Q ri

Þ ¼
XN

i¼1

Fr
Cni

Ari

� �
þ
XN

i¼1

Ti;j
nkidiCni

Q ri

 !
þ
XN
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ðCf þ Cv fr

ffiffiffiffiffiffi
Ari

q
ÞðnkidiCni

Þ
h i

þ Rn

PN
i¼1 nkidiCni

	 

Q n

þ
XN

i¼1

Rr
nkidiCni

Q ri

 !
þ hn

Q n

2
þ Za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
lkidiCi

r !
þ
XN

i¼1

hr
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Q ri

2

� �
: ð6Þ
The problem here is to determine Ari
;Qn;Qri

, i = 1, 2, . . ., N, to minimize the total network cost. Given Qri
; i ¼ 1;2; . . . ;N, we

have
@2TNCðAri
;Q njQ ri

Þ
@A2

ri

¼
XN

i¼1

2FrCni

A3
ri

 !
þ
XN

i¼1

�Cv frnkidiCni

4A3=2
ri

 !
þ
XN

i¼1

hrCni
Q ri

A3
ri

 !
; i ¼ 1;2; . . . ;N;

@2TNCðAri
;Q njQ ri

Þ
@Q2

n

¼ 2Rn

PN
i¼1 nkidiCni

	 

Q 3

n

> 0;

@2TNCðAri
;Q njQ ri

Þ
@Ari

@Arj

¼ 0; j ¼ 1;2; . . . ;N; but i – qj;

@2TNCðAri
;Q njQ ri

Þ
@Ari

@Q n
¼ 0:
Since the facility opening cost Fr is large,
@2TNCðAri

;Q n jQri
Þ

@A2
ri

>0 is satisfied in the general case. The Hessian matrix is similar to that
in Section 3. The minimum theorem in Winston (2004) indicates that the optimal Ari

and Qn can be obtained by solving
@TNCðAri

;Qn jQri
Þ

@Ari
¼ 0 and

@TNCðAri
;Qn jQri

Þ
@Qn

¼ 0
Ari
ðQ ri
Þ ¼

2Fr þ hrQ ri

Cv frnkidi

� �2=3

; ð7Þ

Q n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rn

PN
i¼1nkidiCni

hn

s
: ð8Þ
Eqs. (7) and (8) can then obtain Property 2.
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Property 2. 

 

(a) The influence area for each RDC Ari
increases as the ordering quantity for RDC Qri

or the facility cost of opening each RDC Fr

increase.
(b) The ordering quantity for NDC Qn increases as the inventory holding cost for NDC hn decreases or the ordering cost for NDC

Rn increases.
(c) The influence area for each RDC Ari

decreases as the variable transportation cost Cv increases. However, Ari
does not change

as Cf changes.

Substituting Eqs. (7) and (8) into Eq. (6) yields

 

TNCðQ r1
;Q r2
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This study provides an heuristic algorithm based on a loop and Algorithm 1 to obtain the optimal ordering quantity
Q ��ri

; i ¼ 1;2; . . . ;N.

Algorithm 2.
Step 1. Given Q r2
; . . . ;QrN

and start with i = 1.
1.1: Beginning with the freight cost Ti,j = 1, search for the order quantity Q ri

that minimizes Eq. (9) until a valid optimal
Q �ri

is found (i.e., Q �ri
must fall within the corresponding break quantity range, Bi;j�1 < Q ri

6 Bi;jÞ or j = n.
1.2. If a valid optimal Q �ri

is found, let the corresponding break quantity range be Bi;j��1 < Q 6 Bi;j� and go to Step 2.1;
otherwise go to Step 2.2.

Step 2: Select the optimal order quantity for each RDC in cluster Cni
.

2.1: Compare the total network cost TNCðQ �ri
Þ and TNC(Bi, j) with all j < j⁄. Select the value ðQ �ri

or Bi,j) that minimizes the
total network cost and let Q ��ri

be the optimal value; then go to Step 3.
2.2: Compare the annual profit TNC(Bi,j) for all j 6 n. Select the value Bi,j that minimizes the total network cost and let Q ��ri

be the optimal value; then go to Step 3
Step 3: If i < N, let i = i + 1, go to Step 1.1; otherwise go to Step 4.
Step 4: Let TNC�� ¼ TNCðQ ��r1

;Q ��r2
; . . . ;Q ��rN

Þ.

This section follows the same data in experiment in Section 4.1. After applying Algorithm 2, the optimal solution is when
j = 3 for all clusters, optimal ordering quantity for RDC in cluster Cn1 is Q ��r1

¼ 14;023, optimal ordering quantity for RDC in
cluster Cn2 is Q ��r2

¼ 13;375, optimal ordering quantity for RDC in cluster Cn3 is Q ��r3
¼ 12;648, and the total network cost is

TNC⁄ = 3.15311 � 106. Then, Eqs. (7) and (8) show that the optimal influence area for each RDC in cluster Cn1 is
A�r1
¼ 4179:81, the optimal influence area for each RDC in cluster Cn2 is A�r2

¼ 5019:52, the optimal influence area for each
RDC in cluster Cn3 is A�r3

¼ 6234:27, and the ordering quantity for NDC is Q �n ¼ 3031. The total network cost TNC are very close
to those considering that the order quantity Qr is the same across all RDCs. When focusing on the total network cost, this
concurs with the assumption of Deuermeyer and Schwarz (1981) and Ganeshan (1999): it is a common practice to assume
that the order quantity Qr is the same across all RDCs.

7. Conclusions

This study uses a novel two-phase approximation method to solve the multi-echelon supply network design problem.
The proposed method integrates facility costs, inventory costs, transportation costs, and ordering costs. This method
makes it possible to solve problems with huge amounts of non-homogeneous demand data. The key decisions are where
to locate the RDCs, how to assign retail stores to RDCs, and how to set the inventory policy at different locations to
minimize the total network cost. Numerical studies illustrate the solution procedures and the impacts of the related
parameters on decisions and costs. The proposed model provides a powerful analysis tool for studying potential changes
in a supply chain system due to changes in the parameters. This study also solves the problem of different ordering
quantities for each RDC in different cluster. The results of this study are a useful reference for managerial decision-mak-
ing and administration.
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Our research contributes to the literature (Daskin et al., 2002; Shen et al., 2003; Teo and Shu, 2004; Romeijn et al., 2007;
Shen and Qi, 2007; Mangotra et al., 2009) in several ways. The contributions of this paper to the literature are as follows.
First, this is the first study based on continuous approximation approach for supply chain network design problem with
transportation cost discounts and inventory decisions. In particular, this study simultaneously considers two common types
of transportation cost discounts (quantity discounts and distance discounts). Second, the proposed solution defines the input
data in terms of continuous functions and is capable of formulating these functions for a data set of any size. This is very
important for dealing with practical problems. Third, this study proposes an efficient heuristic method for solving resulting
nonlinear programs. We also conduct numerical analysis to discuss impacts of the changing parameters and provide the
management implications. Fourth, this article considers different ordering quantities for RDCs in different regions. An iter-
ative solution procedure is proposed to solve the problem. We believe this paper provides a good starting point in this re-
search stream. Further research on this topic could relax some assumptions to match real-world scenarios, such as capacity
limitations on DCs and multiple products.
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